迄今为止,紫外线杀菌空气净化器体积较大,因此可以节省对室内空气进行杀菌的时间,但如果将其小型化,对室内空气进行杀菌的时间就会缩短,杀菌效果也会不彻底。此外,传统的紫外线杀菌空气净化器无法在呼出的空气到达他人之前对其进行杀菌。借助 Falcor Aerial 技术,Dr.AiR 应运而生。虽然设计紧凑,但 Dr.AiR 的结构允许吸入的空气在内部流动,并有足够的时间对其进行杀菌。杀菌所需的紫外线被困在 Dr.AiR 内部,吸入的空气在必要的时间内持续暴露在紫外线下。当空气从 Dr.AiR 排出时,附着在微小液滴上的 99.99% 或更多的病毒将被消除。尺寸紧凑,可以放在个人桌子上。使用方法很简单,只需打开“Dr.AiR/Doctor Air”的开关,然后将其放置在您想要的任何地方即可。
在低速操作和模块化概念下进行空气处理和纯化,将不同的技术组合在唯一的系统中,以减少PM1负载和消除,当针对病毒,细菌,微生物,病原体,病原体和其他室内空气中的其他颗粒(如花粉和粉尘)应用于室内。
空气中微塑料(MP)的广泛存在及其对人类健康对人类健康的潜在影响迫切需要开发可靠的方法来量化它们的存在,尤其是在透气分数(<5μm)中。在这项研究中,采用拉曼微光谱(Raman)在不同水平的人类活动水平下在四个室内环境(会议室,一个工作室和两个公寓)中评估室内空气中MP>1μm>1μm的浓度。每立方米58至684 MP之间跨越室内空降的MP浓度(MP M-3)(中位212 MP M-3,MPS/非塑料比0 - 1.6%),不仅取决于人类活动的类型和水平,而且还取决于人类活动的类型和水平。此外,我们在同一环境中评估了IIR手术面孔类型的过滤性能,总体可以保留85.4±3.9%的MPS。我们此外,我们估计室内空气中的人MP摄入量为3415±2881 MPS天-1(主要是聚酰胺MP),可以降低至283±317 MPS-1
一些病例可能会恶化,在儿童和成人中都表现出严重急性呼吸道综合征(SARS)的特征,患者出现呼吸困难/呼吸不适/呼吸困难,室内空气中的氧饱和度(O2)低于 95% 或嘴唇或面部呈青色或胸部持续有压迫感。在这种情况下,应立即就医。
这项研究的目的是获得有关房屋中室内空气中存在哪些可栽培细菌物种的知识,以及空气传播细菌的浓度和多样性是否与不同的因素相关。在五个房屋的不同房间内和52套房屋中一次进行了整整一年的测量。在房屋内,发现了空中细菌浓度的房间对房间的变化,但是在整个房间中发现了细菌物种的重叠。发现了11种非常常见的物种,其中包括:lowffii,巨芽孢杆菌,B。pumilus,kocuria carniphila,K。Palustris,K。Rhizophila,Rhizophila,Micrococcus flavus,M.Luteus,M。Luteus,Moraxella oslaensis and paracococcus yei。通常,革兰氏阴性细菌的浓度和物种叶过与季节显着相关,春季浓度最高。P. Yeei,K。Rhizophila和B. pumilus的浓度与相对湿度(RH)呈正相关,而K. rhizophila的浓度与温度和空气变化速率(ACR)负相关。微球菌浓度与ACR负相关。总体而言,这项研究确定了房屋中室内空气中通常存在的物种,并且某些物种的浓度与这些因素有关:季节,ACR和RH。
在建筑物外发现的大气中的空气称为外部空气。外部空气的主要菌群是真菌。真菌的两个常见属是孢子菌素。除了这两个属外,在Airare aspergillusand,externaria,phytophthora ysipheer中发现了其他属。室内空气还包含大孢子,酵母菌的腹腔,菌丝体的碎片和霉菌的分生孢子。微生物的数量和种类可能会因人口密度而异。
AEH 每小时空气交换量 AFCEE 空军工程与环境中心 API 美国石油协会 ARAR 适用或相关且适当的要求 ASTM 美国材料与试验协会 BKG IA 背景室内空气 BKG OA 背景室外空气 BRAC 基地重新调整和关闭 Cal-EPA 加州环境保护局 CDPHE 科罗拉多州公共卫生与环境部 CERCLA 综合环境反应、补偿与责任法 COC 关注的化学品 CSM 概念场地模型 CTE 集中趋势暴露 DDE 二氯二苯乙烯 DNAPL 致密非水相液体 DERP 国防环境恢复计划 DoD 国防部 DON 海军部 DQO 数据质量目标 DTSC 加州有毒物质控制部 ECOS 美国州环境委员会 EPA 美国环境保护局 EPC 暴露点浓度 FID 火焰离子化检测器 FUDS 以前使用的国防场地 GC 气相色谱法 GC/MS 气相色谱/质谱法 HI 危险指数 HQ 危险商IA 室内空气 IR 红外光谱 IRIS 综合风险信息系统 ITRC 州际技术与监管委员会 J&E Johnson and Ettinger LDPE 低密度聚乙烯
本公告(BU)描述了通过(AB)通过法案(AB)841(第372章,2020章)建立的计划提交要求,用于参加学校重新开放通风和能源效率验证和维修计划的学校,也称为加利福尼亚学校健康的空气,管道和效率(CALSHAPE)计划。Calshape计划由加利福尼亚能源委员会(CEC)管理,并为寻求提高教室室内空气质量的学校提供资金,以及供暖,通风和空调(HVAC)系统的能源效率。
大规模的数据源,遥感技术和出色的计算能力已极大地受益于环境健康研究。最近,引入了各种机器学习算法,以提供有关与每个哮喘患者症状和潜在环境风险因素有关的聚类数据异质性的机械见解。但是,关于这些机器学习工具的性能的信息有限。在这项研究中,我们比较了十种机器学习技术的性能。使用不平衡采样的高级方法(IS),我们改善了9种常规机器学习技术的表现,可预测暴露水平与室内空气质量的相关性与患者峰值呼气流量(PEFR)的变化之间的变化。然后,我们提出了一种深度学习的转移学习方法(TL),以进一步提高预测准确性。我们选择的最终预测技术(TL1_IS或TL2-IS)的TL1_IS的平衡精度中值(56〜76)%为66(56〜76)%,TL2_IS的68(63〜78)%。TL1_IS和TL2_IS的精确水平为68(62〜72)%和66%(62〜69)%,而敏感性水平为58(50〜67)%和59%(51〜80),来自25名患者的敏感性为1.08(精度,精度,精度),至1.28(敏感性),相比之下。我们的结果表明,使用不平衡采样的转移机学习技术是预测PEFR变化的强大工具,这是由于暴露于室内空气而变化的,包括2.5μm和二氧化碳的物质浓度。此建模技术甚至适用于小型或不平衡的数据集,该数据集代表一个个性化的现实世界设置。