已知由形成 J 聚集体的有机染料组成的超分子组装体表现出窄带光致发光,半峰全宽约为 ≈ 9 nm (260 cm − 1 )。然而,这些高色纯度发射体的应用受到菁 J 聚集体相当低的光致发光量子产率的阻碍,即使在溶液中形成也是如此。本文证明了菁 J 聚集体在室温下在水和烷基胺的混合溶液中可以达到高一个数量级的光致发光量子产率(从 5% 增加到 60%)。通过时间分辨的光致发光研究,显示了由于非辐射过程的抑制导致激子寿命的增加。小角度中子散射研究表明了这种高发射性 J 聚集体的形成必要条件:存在用于 J 聚集体组装的尖锐水/胺界面以及纳米级水和胺域共存以分别限制 J 聚集体尺寸和溶解单体。
在室温下在室温下旋转石墨烯中的漩涡量,Marius L. Palm 1†,Chaoxin ding 1†,William S. Huxter 1†,Takashi Taniguchi 2,Kenji Taniguchi 2,Kenji Watanabe 3和ChrisɵanL. degen L. degen L. degen 1,4 * 2材料研究中心纳米构造,材料科学的naɵtute,1-1纳米基,tsukuba,日本305-0044; 3日本的材料科学材料科学和材料科学研究中心,材料科学材料科学,日本1-1 Namiki,日本;瑞士苏黎世8093号苏黎世市Quantum Center 4。 ∗应向谁解决;电子邮件:degenc@ethz.ch。 †这些作者也同样贡献。在室温下在室温下旋转石墨烯中的漩涡量,Marius L. Palm 1†,Chaoxin ding 1†,William S. Huxter 1†,Takashi Taniguchi 2,Kenji Taniguchi 2,Kenji Watanabe 3和ChrisɵanL. degen L. degen L. degen 1,4 * 2材料研究中心纳米构造,材料科学的naɵtute,1-1纳米基,tsukuba,日本305-0044; 3日本的材料科学材料科学和材料科学研究中心,材料科学材料科学,日本1-1 Namiki,日本;瑞士苏黎世8093号苏黎世市Quantum Center 4。∗应向谁解决;电子邮件:degenc@ethz.ch。†这些作者也同样贡献。
储能系统是将可再生能源有效整合到网格中以实现净零能源系统所必需的。在700 bar处压缩的氢是关键的储能技术之一。这项研究评估了固态氢储存的有效性,尤其是多孔材料中的物理吸附,以通过降低操作储罐压力来提高室温下的存储性能和安全性。我们以最大的储罐压力和往返储存效率来动态模型整个存储系统,将吸附材料与传统压缩进行比较。检查了不同循环频率和放电持续时间的不同能量系统的应用。结果表明,与压缩氢相比,基于多孔材料的系统对长期储能服务具有更高的效率。值得注意的是,大量密度在存储性能中起关键作用。例如,与压缩氢系统相比,散装密度为500 kg/m 3的IRMOF-1显示了70%的压力。相比之下,当其整体密度降低到130 kg/m 3时,最大储罐压力甚至比压缩罐高30%。我们强调需要进行全面的材料表征,从而强调了诸如大量密度在最大储罐压力和效率方面确定最大氢吸附物质的重要性。作为一般结果,最佳性能材料取决于特定的目标或系统要求,例如压力,数量,成本或重量。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要 - 用氧气和碳植入的氮化甘露的氮化岩在室温下显示载体介导的自旋机制。使用Tris(环戊二烯基)Gadolinium前体通过金属有机化学蒸气沉积生长的GD掺杂的GAN显示出普通的霍尔效应,并且在室温下没有浪漫主义。在o或c植入GD掺杂的GAN中,观察到表明载体介导的自旋和铁磁性的异常大厅效应。即使在植入后也保持良好的晶体质量。o和c偏爱间质站点,并在GD掺杂的GAN中占据了深层的受体型状态。由GD掺杂的GAN诱导的gadolinium诱导的室温自旋和铁磁性被占据间隙部位的O和C激活。载体介导的自旋功能的机制显示了对控制和操纵自旋作为氮化壳中的量子状态的潜力。这使gagdn:o/c成为室温旋转和量子信息科学应用的潜在半导体材料基础。在本文中,研究了使用离子植入,使用X射线衍射的结构表征在GD掺杂GAN中掺杂,并研究了使用高级HALL效应的自旋相关测量,并进行了相应的讨论。
SARS-CoV-2 疫情已影响全球超过 1.85 亿人,导致超过 400 万人死亡。为了控制疫情,人们仍然需要安全的疫苗,这些疫苗应以低剂量和可扩展的剂量提供持久的保护,并且可以轻松部署。AAVCOVID-1 是一种腺相关病毒 (AAV) 疫苗,基于刺突基因,在小鼠和非人类灵长类动物中单次注射后就表现出强大的免疫原性,并为猕猴提供完全保护,使其免受 SARS-CoV-2 攻击。峰值中和抗体滴度在 1 年内持续存在,并由功能性记忆 T 细胞反应补充。AAVCOVID 载体在人类中没有相关的预先存在的免疫力,也不会引起与基因治疗中使用的常见 AAV 的交叉反应。载体基因组的持久性和表达在注射后会减弱。单次低剂量要求、高产量可制造性以及室温下储存 1 个月的稳定性可能使该技术非常适合支持全球范围内针对新出现病原体的有效免疫运动。
包装说明书(“文档”)。不声称适用于 FDA 监管的应用。本文提供的保证仅在经过适当培训的人员使用时有效。除非文档中另有说明,否则本保证仅限于产品在正常、正确和预期使用的情况下,自发货之日起一年内有效。本保证不适用于买方以外的任何人。提供给买方的任何模型或样品仅用于说明商品的一般类型和质量,并不代表任何产品将符合此类模型或样品。不授予任何其他明示或暗示的保证,包括但不限于适销性、适用于任何特定用途或不侵权的暗示保证。保修期内,买方对不合格产品的唯一救济仅限于卖方自行选择维修、更换或退还不合格产品。卖方不承担因以下原因导致的产品维修、更换或退还:(I) 事故、灾难或不可抗力事件;(II) 买方的误用、过失或疏忽;(III) 以非设计方式使用产品;或 (IV) 不当储存和处理产品。除非产品或产品随附文件中另有明确说明,否则产品仅用于研究,不得用于任何其他目的,包括但不限于未经授权的商业用途、体外诊断用途、体外或体内治疗用途,或任何类型的人类或动物消费或应用。
SARS-COV-2大流行已经影响了全球超过1.85亿人,导致超过400万人死亡。为了遏制大流行,继续需要安全疫苗,以低和可扩展的剂量提供耐用的保护,并且可以轻松部署。在这里,Aavcovid-1是一种腺相关病毒(AAV),基于尖峰基因的疫苗候选者在单个注射后表现出在小鼠和非人类培训中的有效免疫原性,并且在Ma-Caques中完全保护了SARS-COV-2挑战。峰值中和抗体滴度在1年时持续,并与功能性记忆T细胞反应相辅相成。Aavcovid载体在人类中没有相关的先前免疫力,也不会引起对基因治疗中使用的常见AAV的交叉反应。注射后载体基因组持久性和表达减弱。单一的低剂量需求,高收益的生产性和1个月在室温下存储的稳定性可能使得这项技术非常适合在全球范围内支持有效的新兴病原体的有效免疫效果。
图 2 | 通过电化学抛光稳定的量子电导能级。a. 忆阻单元中的 SET 过程示意图,该过程是一种电化学驱动过程,且尖端形成的电场进一步加速了这一过程。细丝生长过程中的恶劣条件通常会导致量子电导能级的高度不可预测性和多变性。b. RESET 过程中的电化学抛光效应能够通过首先去除/溶解接触配置中的不稳定原子而保留更稳定的原子来获得更可靠的量子电导能级。在此框架中,系统通过离散的电导能级从低阻态 (LRS) 演变为中间亚稳态电阻态 (MRS) 再演变为量子点接触 (QPC)。在 RESET 过程中,不稳定的原子将从细丝中去除,留下最稳定的原子形成稳定的 QPC。c.循环示例:通过 100 mV/s 的电压扫描速率获得突然 SET,通过慢速电压扫描(1.2 mV/s)通过电化学抛光获得逐渐 RESET。d. 通过电化学抛光获得的 RESET 过程显示稳定的量子电导平台,为 𝐺 0 的倍数。插图显示了扫描施加电压时量子电导平台随时间的稳定性。
在几种温度下加工后,对基于 CdHgTe 的红外探测器的机械行为进行了评估,以确定热机械负荷对残余应力和可靠性的影响。首先,依靠 SEM、X 射线微层析成像和衍射分析,对探测器的结构进行了全面表征,以便了解所有组成层(特别是铟焊料凸块)的性质、形态和晶体取向。结果特别显示了铟凸块的意外单晶外观,具有可重复的截锥形几何形状。为了获得加工后结构在工作温度范围内(从 430 K 到 100 K)的热机械响应,随后开发了一个 3D 有限元模型。正如预期的那样,数值结果显示,从高温到低温,结构中的应力梯度发生了变化,在 100 K 时,CdHgTe 中的局部高应力约为 30 MPa,这主要是由于不同层之间的热膨胀系数不匹配。它们强调了凸块的几何形状和单晶性质以及不同材料的行为规律的重大影响。