摘要 - 在这项工作中,报告了具有实质感知性能的室温(RT; 〜27°C)操作的氧化铁 /聚苯胺(Fe₂O₃ /PANI)的柔性氨(NH₃)传感器。最初,在可生物降解的纸基板上打印了截面电极(IDE)(使用石墨烯基墨水)。此外,pani纳米纤维在印刷的IDE上进行了电纺,然后掉落了Fe 2 O 3的层。X射线衍射(XRD)和傅立叶变换红外光谱(FTIR)研究,以确认复合形成,然后进行扫描电子显微镜(SEM)分析,以检查传感表面形态。在0.5 ppm(即500 ppb)至50 ppm的范围内检查了氨的感应性能,即使在0.5 ppm处也达到1.99%的响应。响应 /恢复时间被指出为950 s / 250 s,朝0.5 ppm的氨。此外,还研究了对包括二氧化碳(CO 2),二氧化碳(NO 2),一氧化碳(CO)和二氧化硫(SO 2)在内的干扰气体的选择性。还提出了复合材料对氨气检测的提议的感应机制。索引项 - 氨传感器;静电纺丝; Fe 2 O 3 /Pani复合材料;灵活的传感器;室温;纸基材。
摘要:由于成本效益和易于操作,室温长波红外(LWIR)检测器比低温溶液优先。当前未冷却的LWIR探测器(例如微量体计)的性能受到降低的灵敏度,缓慢的响应时间和缺乏动态光谱可调性的限制。在这里,我们提出了一个基于石墨烯的有效室温LWIR检测器,利用其可调的光学和电子特性,具有高检测性和快速响应时间。固有的弱光吸收可以通过与光腔耦合的图案化石墨烯上的狄拉克等等离子增强。通过不对称载体生成环境,通过Seebeck效应将吸收的能量转化为光伏。此外,通过静电门控实现8-12μmLWIR带中的动态光谱可调性。拟议的检测平台铺平了新一代未冷却的基于石墨烯的LWIR光电探测器,用于诸如分子传感,医学诊断,军事,安全和空间之类的广泛应用。关键字:红外探测器,石墨烯,二维材料,狄拉克等离子,光热效应
1 Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States 2 Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, 510632, Guangzhou, China 3 The Molecular Foundry, L awrence Berkeley National Laboratory, Berkeley, California 94720, United States 4 Department of Chemistry,斯坦福大学,加利福尼亚州斯坦福大学94305,美国5机械工程系,斯坦福大学,斯坦福大学,加利福尼亚州斯坦福大学94305,美国6美国6号施用物理系,斯坦福大学,加利福尼亚州斯坦福大学,加利福尼亚州94305,美国7 Marvell Technology,Marvell Technology,Inc.,Inc。 9美国斯坦福大学斯坦福大学放射学系94305,美国
最近,在理论上提出并实现了电子状态的自旋分裂(SS)的非常规的抗铁磁铁,其中包含指向不同方向的矩矩的磁性sublattics通过一组新型的符号来连接。这样的SS是实质性的,依赖性的,并且与自旋 - 轨道耦合(SOC)强度无关,使这些磁铁有望用于抗磁性旋转旋转。在此结合了角度分辨光发射光谱(ARPE)和密度功能理论(DFT)计算,这是一项对CRSB的系统研究,是一种金属旋转式抗速率抗fiferromagnet候选,具有Néel温度T n = 703 K。数据揭示了沿平面外和平面动量方向的CRSB的电子结构,从而使各向异性K依赖性SS与计算结果非常吻合。在非对称动量点下,此类SS的大小至少达到至少0.8 eV,这显着高于最大的已知SOC诱导的SS。这种化合物扩大了抗磁性旋转型材料的材料的选择,并且很可能会刺激随后对在室温下起作用的高效率旋转器件的研究。
热电设备(TEDS)是固态能量转换器,在经受外部温度梯度时会产生电力,或者在配备电流时产生温度差异并用作固态冷却器。TEDS将热量转化为电力的能力,反之亦然,在过去二十年中开发了用于废热恢复和固态冷却的高效率设备的巨大研究兴趣。1 - 12个世界能源消耗的三分之二仍然消散,因为浪费了这种浪费的能量,而这种浪费的能量仅在美国就可以产生15吨的电力。13同时,冷却和热管理对于建筑物和车辆的人类舒适性以及电子和医疗设备的可靠操作和寿命至关重要。固态
图2 |横截面示意图,SEM图像和I-V特征的特征。a,示意图。B植入物用于在GE中创建P接触区域(最深的蓝色),P植入物用于在Si中创建N-Contact区域。SI中的其他B植入物形成GE以下的两个区域,一个作为电荷层(较轻的蓝色),一个作为筛选层(较深的蓝色)。Si中的其他P植入物形成了埋入的SIO 2上方的深N孔区域,以及N-Contact区域和深N-Well区域之间的N-链接区域。b,SEM图像。图像被捕获,对应于图中的黄色虚线包围的黄色区域2(a)。请注意,PT,即白色的共形层,在设备上沉积以避免使用SEM充电。c,d,光电流(实心曲线)和暗电流(虚线曲线)及其相应的增益,绘制为S1(蓝色)和S2(红色)的施加电压的函数。由参考PD的照片电流确定,图。2(c)和图中的统一增益点2(d)分别通过蓝色和红色点缀的圆圈标记和标记。
b'Abstract:氯离子电池(CIB)的高能量密度和成本效益使它们成为锂离子电池的有希望的替代品。但是,CIB的发展受到缺乏兼容电解质来支持具有成本效益的阳极的限制。在此,我们提出了一个合理设计的固体聚阳离子电解质(SPE),以启用利用铝(AL)金属作为阳极的室温氯离子电池。此SPE以改进的空气稳定性和安全性赋予CIB配置(即没有氟化和液体泄漏)。通过SPE的量身定制的协调结构实现了高离子电导率(1.3 \ xc3 \ x9710 2 scm 1)。同时,固体聚阳离子电解质确保稳定的电解质界面,从而有效抑制树突对阳极阳极的生长和feocl阴极的降解。Al J Spe J Feocl氯离子电池在250 mahg 1(基于阴极)和延长的寿命中展示了高排放能力。我们的电解质设计开辟了开发低成本氯离子电池的新途径。
摘要我们报告了由单晶立方ktao 3中的位错介导的室温散装可塑性,与传统的知识形成了鲜明的了解,即单晶ktao 3容易受到脆性裂解的影响。使用环状Brinell凹痕,划痕和单轴体积压缩的基于力学的组合实验方法始终显示从Mesoscale到宏观尺度的KTAO 3中的室温脱位。这种方法还提供可调的脱位密度和塑性区域尺寸。扫描传输电子显微镜分析基于激活的滑移系统为<110> {1-10}。鉴于KTAO 3作为新兴的电子氧化物的意义越来越重要,并且对调谐氧化物物理特性的脱位的兴趣越来越大,我们的发现有望引发与脱位的KTAO 3的协同研究兴趣。
摘要:作为清洁,可再生和稳定的能量来源的地热能量的兴趣正在固定,这是努力减少碳排放的一部分,并远离化石燃料。温泉发生在可能具有剥削潜力的活性热液系统的位置中,本文评估了Ulu Slim Hot-Spring的潜力,这是马来西亚半岛上报告的大约60个地下室热弹簧中最温暖的。可用的数据和类似推断,即,热弹力的表面温度和流量,适用的地热梯度的范围,地球热计的源温度指示,水力头部差异,与表面形象相关的水力差异,指示性和暂定性断层以及分裂尺寸,几何学和分布,以及概念上的水平序列,并补充概念性的水平序列,并补充概要 - 逐步逐步逐步逐步逐步逐步逐步逐步逐步逐步促成 - 促成良好的逐步逐步促成 - 促进型 - 促进量表 - 促进量表 - 概要 - 促进式逐步逐步促成 - 促进型 - 地下参数,例如控制可提取热量的断裂系统的源深度和几何形状以及特性。结果,该模型模拟了由喷油器井支持的假设井的热量和电力潜力(从电源植物中重新注入凉爽的废物流)。模型结果表明,由于狭窄的断裂/断层走廊的流体循环而导致的过早冷却是一个重大风险。总体而言,研究结果表明,使用像Ulu Slim这样的温泉地热热进行发电可能并不那么简单。也许寻找有吸引力的地热位置应在热弹簧位置的指导下,而是在基础设施和电力需求附近的驱动下。
摘要:在片上操作和体温特有的温度下,用于高效能量收集器的 CMOS 兼容材料是可持续绿色计算和超低功耗物联网应用的关键因素。在此背景下,研究了新的 IV 族半导体,即 Ge 1 − x Sn x 合金的晶格热导率 (κ)。通过最先进的化学气相沉积在 Ge 缓冲 Si 晶片上外延生长 Sn 含量高达 14 at.% 的层。通过差分 3 ω 方法电测量晶格热导率 (κ) 从 Ge 的 55 W/(m · K) 急剧下降到 Ge 0.88 Sn 0.12 合金的 4 W/(m · K)。经验证,对于应变松弛合金,热导率与层厚度无关,并证实了先前通过光学方法观察到的 Sn 依赖性。实验 κ 值与电荷传输特性的数值估计相结合,能够捕捉这种准直接带隙材料系统的复杂物理特性,用于评估 n 型和 p 型 GeSn 外延层的热电性能系数 ZT。结果突出了单晶 GeSn 合金具有很高的潜力,可以实现与 SiGe 合金中已经存在的能量收集能力,但在 20°C - 100°C 温度范围内,没有与 Si 兼容的半导体。这为在 CMOS 平台上实现单片集成热电提供了可能性。关键词:热电材料、晶格热导率、GeSn 合金、CMOS、绿色计算、能量收集 ■ 简介