摘要我们报告了由单晶立方ktao 3中的位错介导的室温散装可塑性,与传统的知识形成了鲜明的了解,即单晶ktao 3容易受到脆性裂解的影响。使用环状Brinell凹痕,划痕和单轴体积压缩的基于力学的组合实验方法始终显示从Mesoscale到宏观尺度的KTAO 3中的室温脱位。这种方法还提供可调的脱位密度和塑性区域尺寸。扫描传输电子显微镜分析基于激活的滑移系统为<110> {1-10}。鉴于KTAO 3作为新兴的电子氧化物的意义越来越重要,并且对调谐氧化物物理特性的脱位的兴趣越来越大,我们的发现有望引发与脱位的KTAO 3的协同研究兴趣。
图1。单层MOS 2的光致发光中的异常功率依赖性。(a)(左列)光致发光区域的空间图像和(右列)在不同入射功率密度下PL的空间光谱曲线的二维图像。这两种类型的图像共享相同的垂直轴。如图所示,入射功率被标记。(b)PL光谱从照明区域的中心提取。(c)PL强度(黑色曲线)和PL区域的大小(红色曲线)具有入射力。(d)位置(具有最大振幅)和PL峰的FWHM作为入射力的函数。(c)和(d)中有白色的两个区域表示两个过渡,从游离激子(Fe)到电子孔等离子体(EHP),从电子孔等离子体(EHP)到电子孔液体(EHL)。
在室温下在室温下旋转石墨烯中的漩涡量,Marius L. Palm 1†,Chaoxin ding 1†,William S. Huxter 1†,Takashi Taniguchi 2,Kenji Taniguchi 2,Kenji Watanabe 3和ChrisɵanL. degen L. degen L. degen 1,4 * 2材料研究中心纳米构造,材料科学的naɵtute,1-1纳米基,tsukuba,日本305-0044; 3日本的材料科学材料科学和材料科学研究中心,材料科学材料科学,日本1-1 Namiki,日本;瑞士苏黎世8093号苏黎世市Quantum Center 4。 ∗应向谁解决;电子邮件:degenc@ethz.ch。 †这些作者也同样贡献。在室温下在室温下旋转石墨烯中的漩涡量,Marius L. Palm 1†,Chaoxin ding 1†,William S. Huxter 1†,Takashi Taniguchi 2,Kenji Taniguchi 2,Kenji Watanabe 3和ChrisɵanL. degen L. degen L. degen 1,4 * 2材料研究中心纳米构造,材料科学的naɵtute,1-1纳米基,tsukuba,日本305-0044; 3日本的材料科学材料科学和材料科学研究中心,材料科学材料科学,日本1-1 Namiki,日本;瑞士苏黎世8093号苏黎世市Quantum Center 4。∗应向谁解决;电子邮件:degenc@ethz.ch。†这些作者也同样贡献。
摘要:锗已成为自旋电子学和量子信息应用领域中极具前景的材料,与硅相比具有显著的基本优势。然而,利用施主原子作为量子比特来制造原子级器件的努力主要集中在硅中的磷上。将磷以原子级精度定位在硅中需要进行热结合退火,但这一步骤的成功率低已被证明是阻碍其扩大到大规模器件的根本限制。本文,我们对锗 (001) 表面上的砷化氢 (AsH 3 ) 进行了全面研究。我们表明,与之前研究过的任何硅或锗上的掺杂剂前体不同,砷原子在室温下完全结合到替代表面晶格位置。我们的研究结果为下一代原子级供体设备铺平了道路,该设备将锗的优越电子特性与砷化氢/锗化学的增强特性相结合,有望扩大到大量确定性放置的量子比特。
量子记忆是通过同步概率操作来实现大规模量子网络的关键技术。这样的网络对量子记忆施加了严格的要求,例如存储时间,检索效率,带宽和可扩展性。在温暖的原子蒸气平台上使用的梯形阶梯协议是有希望的候选人,将有效的高带宽操作与低噪声的按需检索相结合。然而,它们的存储时间受到运动诱导的脱粒的严重限制,这是由包含蒸气的原子的广泛速度分布引起的。在本文中,我们演示了速度选择性光泵,以提出这种腐蚀机制。这将增加蒸气记忆的可实现的内存存储时间。该技术也可以用于制备任意形状的吸收蛋白,例如准备原子频率梳吸收特征。
电子 - 高弹性导体中的电子相互作用会产生类似于经典流体动力学描述的特征的传输特征。使用纳米级扫描磁力计,我们在室温下在单层石墨烯设备中成像了独特的流体动力传输模式 - 固定电流涡流。通过测量具有增加特征大小的设备,我们观察到了当前涡流的消失,因此验证了流体动力学模型的预测。我们进一步观察到,孔和电子主导的运输方式都存在涡流流,但在双极性方面消失了。我们将这种效果归因于涡度扩散长度接近电荷中立性的降低。我们的工作展示了当地成像技术的力量,以揭示异国情调的介绍转运现象。t
4. 14,000 × g 离心 2 分钟,转移 500 ul 上清液到新的 2 ml 离心管,加入 500 μL Buffer AL 和 600 μL 异丙醇和 15 µL MB Mix ,室温
这是以下文章的同行评审版本:Brown, A. A. M., Damodaran, B., Jiang, L., Tey, J. N., Pu, S. H., Mathews, N. & Mhaisalkar, S. G. (2020). Lead halide perovskite nanocrystals : roomtemperature syntheses towards commercial viability. Advanced Energy Materials, 10(34), 2001349‑. https://dx.doi.org/10.1002/aenm.202001349,最终版本已发布于 https://doi.org/10.1002/aenm.202001349。本文可用于非商业用途,符合 Wiley 自存档版本使用条款和条件。
辐射热计通过吸收介质的热升高来测量光功率。第一台辐射热计由兰利 [ 1 ] 于 1881 年为恒星辐射测量而发明,此后技术不断发展。20 世纪 60 年代,第一批激光器 [ 2 ] 开始商用,美国国家标准与技术研究所 (NIST,West 等 [ 3 , 4 ]) 引入了激光量热法来满足激光功率计校准的需要。辐射测量领域的一个重要里程碑是 1985 年发明的低温辐射计 [ 5 ],它至今仍是该领域最精确的主要标准 [ 6 – 10 ],其 (k = 2) 不确定度低于 0.05%。虽然低温辐射计的不确定度低于室温辐射计,但它们价格昂贵、体积庞大且不方便用户使用。为了实现高精度,低温恒温器中的辐射热计不能加热到超出其线性工作范围,这为可测量的激光功率设定了上限。 这意味着这些仪器的动态范围是有限的,如果测量更高的激光功率,必须使用可追溯到低温辐射计或其他绝对探测器的传递标准探测器。 维持较长的校准链需要时间和人力,并且测量不确定性会在这些链中累积。 为了缩短校准链并使绝对辐射计价格合理且更易于使用,可预测量子效率探测器 (PQED) 于 2013 年开发,它可以在低温 [ 11,12 ] 或室温 [ 13 ] 下工作。 然而,量子探测器在 1 mW 时饱和,因此其测量范围与大多数低温辐射计的测量范围相似。 2010 年进行的 EUROMET 高功率激光器辐射功率国际比对 [ 14 ] 表明,各国计量机构之间 1 W – 10 W 激光功率测量结果的一致性仅为 ∼ 1% 水平。因此,仍然需要
©2023作者。开放访问。本文是根据Creative Commons归因4.0国际许可证的许可,该许可允许以任何媒介或格式的使用,共享,适应,分发和复制,只要您适当地归功于原始作者和来源,就可以提供与Creative Commons许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by/4.0/。