当前,农业既受到提高生产力的压力,也受到植物病虫害带来的压力。植物病虫害会影响多种作物,导致产量大幅下降。在寻求新的害虫防治措施的过程中,IPM 策略作为一种整体害虫管理方案,迄今为止得到了最多的关注。IPM 计划的基本组成部分是监测田地以确定是否存在害虫问题,从而证明采取防治措施是合理的。传统的田间害虫监测既耗时又不经济,而且人为错误很多。此外,传统 IPM 的应用存在缺陷,因为它缺乏足够的智能来有效地管理害虫。这种不足的智能导致对田地进行一刀切和统一的处理。使用空间技术的监测系统将具有成本效益,并且可以使用“特定地点”的 IPM 方法在需要的时间和地点用农药处理田地。田地的光谱反射会随着物候(生长)阶段、类型和作物健康状况的变化而变化,因此可以通过多光谱传感器进行测量和监测。本文重点介绍了害虫综合治理中农药的合理使用、传统害虫综合治理的弱点、可纳入害虫综合治理的空间技术组成部分以及将空间技术纳入害虫综合治理的好处。
到2050年:实现一种综合方法来实现淡水害虫管理,将传统知识与强大的社区领导力和公共教育结合在一起,以影响行为的改变。
•在市政乡村路边处理“区域禁止的杂草”; •控制和防止“区域控制的杂草”的传播以及与DJPR合规项目和/或支持社区主导的杂草和害虫防治活动相吻合的市政乡村路面上的兔子的传播; •为理事会以前的路边杂草和害虫防治计划提供资助的项目的后续治疗工程; •在市政乡村路边的“区域控制杂草”和兔子的控制活动,这些活动支持其他投资用于综合景观保护项目或解决社区问题。•控制社区广泛关注的市政道路上的“限制杂草”活动; •对“区域禁止的杂草”,“区域控制的杂草”和“受限制的杂草” MACEDON RANGES进行计划,进行计划,制图和社区咨询,负责在整个郡的大约3000公顷的理事会管理道路上进行害虫动物和杂草控制。理事会还与土地所有者和社区合作,以实现综合的景观规模成果。
1)进口,州际运动和环境释放已经过基因工程的列出的监管生物可能需要根据第340部分第7 CFR颁发的不同许可。任何未经授权的进口,州际运动或环境释放(包括意外释放)的受管制有机体违反这些法规。在移动基因工程生物之前,请在:https://www.aphis.usda.gov/aphis/aphis/ourfocus/biotechnology上联系APHIS生物技术监管服务(BRS)。如果BR不需要许可证,请联系害虫,病原体和生物防治许可单元,以获取进一步的指导:pest.permits@usda.gov 2)如果在发货中确定了动物病原体,以确保适当的保障,请参考http://www.aphis.usda.gov/import_export/animals/animal_import/animal_import/animal_imports_anproducts.shtml 3)如果确定了人类病原体国家监管机构。请联系适当的机构,例如美国环境保护局,美国鱼类和野生动物服务局,美国食品和药物管理局,疾病控制与预防中心,Aphis兽医服务部门,Aphis Biotechnology监管服务或您所在州的农业部确保正确许可。5)如果您考虑续签本许可证,则应在本许可到期日之前的90天提交申请,以确保继续承保。要求需要遏制设施的许可可能需要更长的时间来处理。6)当受调节的材料包括国内土壤时,您必须遵守所有当地检疫,请参见:http://wwwww.aphis.usda.gov/planthealth/pests_and_and_disease,特别关心土壤从某些大陆区域移动的特殊关注:进口消防蚂蚁: Golden Nematodes:http://www.aphis.usda.gov/planthealth/gn;土豆/苍白的囊肿线虫:http://www.aphis.usda.gov/planthealth/pcn; phytophthora ramorum(突然的橡木死亡):http://www.aphis.usda.gov/plant-health/sod
机载多光谱图像在害虫管理系统中的应用 Y. Huang、Y. Lan 和 W.C. Hoffmann USDA-ARS,APMRU 2771 F&B Road College Station,TX,77845 电子邮件:yhuang@sparc.usda.gov 摘要 开发并测试了一种用于农业飞机的多光谱成像系统,以提供田地图像并帮助农民和作物顾问管理农业用地。这项研究的结果表明,机载 MS4100 多光谱成像系统在区域性害虫管理系统中具有巨大应用潜力,例如杂草控制或昆虫危害检测。多光谱图像处理可产生 NIR、红色、绿色、NR、NG、NDVI 和 NDNG 指数或图像,可用于评估农田中的生物量、作物健康、生物型和害虫侵染。分类后的图像通过区分图像中光谱特征的变化来识别地面覆盖簇。图像分类的结果可以提供关键输入,以生成用于精准应用作物生产和保护材料的处方数据。
半翅目昆虫的起源可以追溯到 2.3 亿年前的二叠纪晚期,远早于 1 亿年前的白垩纪开花植物的起源。半翅目昆虫用吸吮式喙进食流质食物;植食性半翅目昆虫的口器(刺)结构精巧,可以从植物木质部或韧皮部中贪婪地吸食食物。这种适应性使一些半翅目昆虫成为全球重要的农业害虫,每年造成严重的农作物损失。由于农业环境中依赖化学杀虫剂控制害虫,许多半翅目害虫已经进化出对杀虫剂的抗药性,因此迫切需要开发新的、针对特定物种的、对环境友好的害虫防治方法。 CRISPR/Cas9 技术在果蝇、赤拟谷盗、家蚕和埃及伊蚊等模型昆虫中的快速发展,引发了双翅目和鳞翅目新一轮的创新基因控制策略,也引发了人们对评估半翅目基因控制技术的兴趣。迄今为止,半翅目的基因控制方法在很大程度上被忽视,因为将遗传物质引入这些昆虫的生殖系存在问题。模型昆虫物种中 CRISPR 介导的诱变频率很高,这表明,如果能够解决半翅目的递送问题,那么半翅目的基因编辑可能很快实现。过去 4 年中,CRISPR/Cas9 编辑已在 9 种半翅目昆虫中取得了重大进展。这里我们回顾了半翅目昆虫的研究进展,并讨论了将当代遗传控制策略扩展到这一对农业具有重要意义的昆虫目物种所面临的挑战和机遇。
1 Bee研究实验室,Beltsville农业研究中心,农业研究服务,USDA,美国北部10300号,巴尔的摩大街10300 scott.geib@usda.gov(S.M.G. ); sheina.sim@usda.gov(S.B.S. ); tyler.simmonds@usda.gov(T.J.S. ); rene.corpuz@usda.gov(R.L.C。) 3美国农业研究服务局国家农业图书馆,美国农业部,10301 Baltimore Avenue,Baltimore Avenue,Beltsville,MD 20705,美国; monica.poelchau@usda.gov(M.F.P。 ); Christopher.Childers2@usda.gov(C.P.C.) 4玉米昆虫和作物遗传学研究部,农业研究服务,美国农业部,2310 Pammel Dr.,Ames,IA 50011,美国; brad.coates@usda.gov 5 Oak Ridge科学与教育研究所,P.O。 Box 117,Oak Ridge,TN 37831,美国6储存的产品昆虫和工程研究部,谷物和动物健康研究中心,农业研究服务,USDA,USDA,1515 College Avenue,Manhattan,KS 66502,美国; erin.scully@usda.gov 7遗传学和育种研究部,美国肉类动物研究中心,农业研究服务局,美国农业部,国家刺激性18d,克莱中心,NE 68933,美国; tim.smith2@usda.gov 8国家计划,农作物生产和保护的办公室,农业研究服务,美国农业部,5601 Sunnyside Avenue,贝尔茨维尔,MD 20705,美国; kevin.hackett@usda.gov 9基因组学和生物信息学研究部门,杰米·惠顿三角洲州研究中心,农业研究服务,美国农业部,美国MS 38776,美国美国农业部141; brian.schef flfer@usda.gov *通信:anna.childers@usda.gov1 Bee研究实验室,Beltsville农业研究中心,农业研究服务,USDA,美国北部10300号,巴尔的摩大街10300 scott.geib@usda.gov(S.M.G.); sheina.sim@usda.gov(S.B.S.); tyler.simmonds@usda.gov(T.J.S.); rene.corpuz@usda.gov(R.L.C。)3美国农业研究服务局国家农业图书馆,美国农业部,10301 Baltimore Avenue,Baltimore Avenue,Beltsville,MD 20705,美国; monica.poelchau@usda.gov(M.F.P。); Christopher.Childers2@usda.gov(C.P.C.)4玉米昆虫和作物遗传学研究部,农业研究服务,美国农业部,2310 Pammel Dr.,Ames,IA 50011,美国; brad.coates@usda.gov 5 Oak Ridge科学与教育研究所,P.O。Box 117,Oak Ridge,TN 37831,美国6储存的产品昆虫和工程研究部,谷物和动物健康研究中心,农业研究服务,USDA,USDA,1515 College Avenue,Manhattan,KS 66502,美国; erin.scully@usda.gov 7遗传学和育种研究部,美国肉类动物研究中心,农业研究服务局,美国农业部,国家刺激性18d,克莱中心,NE 68933,美国; tim.smith2@usda.gov 8国家计划,农作物生产和保护的办公室,农业研究服务,美国农业部,5601 Sunnyside Avenue,贝尔茨维尔,MD 20705,美国; kevin.hackett@usda.gov 9基因组学和生物信息学研究部门,杰米·惠顿三角洲州研究中心,农业研究服务,美国农业部,美国MS 38776,美国美国农业部141; brian.schef flfer@usda.gov *通信:anna.childers@usda.govBox 117,Oak Ridge,TN 37831,美国6储存的产品昆虫和工程研究部,谷物和动物健康研究中心,农业研究服务,USDA,USDA,1515 College Avenue,Manhattan,KS 66502,美国; erin.scully@usda.gov 7遗传学和育种研究部,美国肉类动物研究中心,农业研究服务局,美国农业部,国家刺激性18d,克莱中心,NE 68933,美国; tim.smith2@usda.gov 8国家计划,农作物生产和保护的办公室,农业研究服务,美国农业部,5601 Sunnyside Avenue,贝尔茨维尔,MD 20705,美国; kevin.hackett@usda.gov 9基因组学和生物信息学研究部门,杰米·惠顿三角洲州研究中心,农业研究服务,美国农业部,美国MS 38776,美国美国农业部141; brian.schef flfer@usda.gov *通信:anna.childers@usda.gov
植物暴露于与其他生物体相互作用引起的生物胁迫。这会导致对其增长,发展和生产力的不利影响。植物已经发展出了复杂的防御机制来保护自己,包括感测生物提示,信号转导,转录物重编程,蛋白质以及代谢物水平以增强其防御状态。植物的一种重要大量营养素是钙,它在控制植物性相互作用的早期信号通路中起着重要作用。植物会响应害虫或病原体攻击而产生钙特征,该钙具有信号。为了激活防御机制,这些信号由钙传感器检测到,然后发送到下游信号传导组件。Our comprehension of the biochemical and molecular elements of calcium signaling, such as Calmodulin (CaM), CaM-like proteins (CML), Calcineurin B-like proteins (CBL), Calcium dependent protein kinases (CDPKs) and their transporters viz Cyclic nucleotide gated channels (CNGCs), two pore channels (TPCs), Annexins,谷氨酸样受体通道,Ca 2+ /阳离子交换器(CCXS),Ca 2+ -ATPases,Ca 2+ /H+交换器(CAXS)最近已进展。即使已经进行了许多尖端研究,但对于钙信号通路的完整组件的解码及其与其他相关相关的途径(例如活化蛋白激活的蛋白质激酶(MAPK)途径,病原体和pest相互作用时)的解码知之甚少。在本研究主题中,Neelam等。防御信号系统是通过基因组编辑和基因工程,科学家将能够修改钙信号系统及其成分,这些钙在植物防御中至关重要,以产生对虫害和疾病更具耐药性的植物。强调了钙信号通路在植物对有害和有用的微生物的反应中的关键参与,从而阐明了这些相互作用的复杂动力学。
森林是巨大陆地生态系统和水生生物多样性的潜在栖息地,在生态保护和气候调节中发挥着重要作用。人类对森林的压力导致森林消失、破碎化和退化。在气候变化制度下,可持续的森林保护方法的要求是重中之重。在林木中,杨树 (Populus L.) 在全球林业中引起了关注,因为它是改善城市景观质量和数量的有前途的材料。这些植物提供的木材可用作造纸业的原材料和潜在的生物燃料来源。然而,一些生物胁迫,如害虫和病原体的侵袭,严重影响杨树的生产和生产力。由于杨树的生命周期长,缺乏具有抗性基因的合适供体,通过传统的树木育种方法对杨树的改良受到限制。由于杨树具有高效的遗传转化能力,它已被用作研究基因功能的模型植物。本综述将全面概述杨树受到的害虫和病原体的侵袭,重点介绍其感染机制、传播途径和控制策略。此外,还将研究最广泛使用的遗传转化方法(基因枪介导、农杆菌介导、原生质体转化、micro-RNA 介导和 micro-RNA 成簇的规律间隔短回文重复序列 (CRISPR) 相关 (CRISPR-Cas) 系统方法和 RNA 干扰),以提高杨树对害虫和病原体的耐受性。此外,还将深入探讨分子生物学工具的前景、挑战和最新进展,以及它们在遗传转化以提高杨树抗虫害能力的安全应用。最后,讨论了通过各种基因工程技术开发的抗性转基因杨树的再生。
牛业包括奶农和牛肉农民,是拟议中的NPMP的受益者。如果允许建立,则预测2018年的支原体牛会在2018年5月未采取任何行动的情况下,在10年内损失牛工工业(50%的信心),至115.3亿美元(90%的信心)。附录1包含50%和90%的置信度,当时考虑的期权的成本和影响。消除支原体牛的牛将保持牛群的生产率,减少新西兰对抗生素的依赖,并有助于保护动物福利。拟议的消除支原体牛的拟议方法估计为2.134亿美元(预计该行业将资助32%)。因此,牛肉和乳制品部门所带来的收益可能会超过其上施加的成本。这使得将牛肉和奶农归类为受益人是适当的。