西奈,纽约,纽约州,美国 3. 斯坦福大学医学院生物化学系,斯坦福,加利福尼亚州,美国 4. 斯坦福大学医学系,心血管医学分部,斯坦福,加利福尼亚州,美国 5. 美国密苏里州堪萨斯城儿童仁慈医院基因组医学中心儿科系 6. 美国密苏里州堪萨斯城密苏里大学医学院儿科系 7. 美国华盛顿州西雅图华盛顿大学霍华德休斯医学研究所
人类基因组项目是一个巨大的成就,为人类物种的遗传学和基因组学探索了无数的基础。多年来,人类基因组参考序列仍然不完整,并且缺乏人类遗传多样性的代表。最近,已经出现了两个重大进展来解决这些缺点:完全无间隙的人类基因组序列,例如由端粒到telomere群结的结合所开发的,以及高质量的pangenomes,例如由人类Pangenome Pangenome参考联盟中的dna序列组成和基因组合的依赖性,例如,由人类Pangenome PangeNome参考核心组成的核心和基因组合的核心,历史上难以顺序的区域,包括着丝粒,端粒和分段重复。同时,Pangenomes捕获了全世界种群中广泛的遗传多样性。共同发展了基因组学研究的新时代,增强了基因组分析的准确性,铺平了精确医学的道路,并有助于更深入地了解人类生物学。
。CC-BY-NC-ND 4.0 国际许可,根据 提供(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 7 月 26 日发布。;https://doi.org/10.1101/2024.07.25.605222 doi:bioRxiv 预印本
家族性高胆固醇血症 (FH) 是一种遗传性疾病。它是一种常染色体显性遗传模式。它是一种代谢性疾病。19 号染色体的突变会导致这种疾病。19 号染色体编码低密度脂蛋白 (LDL) 受体 (LDLR) 的数据。LDLR 可以降低循环中升高的 LDL 水平,也可以维持正常的 LDL 水平。它会导致早期患心血管疾病的风险。FH 的特征是由于 LDLR 的突然变化导致血液中 LDL 水平升高,从而导致血液中 LDL 的清除率降低。斑块沉积在动脉管腔中,称为动脉粥样硬化,发生在年轻时。如果两个基因都受到影响,则为纯合 FH (HoFH);这种情况非常罕见。当单个基因受到影响时,这种情况称为杂合 FH (HeFH)。 HoFH 比 HeFH 更早出现严重的心脏病。FH 的主要原因是 LDLR 基因突变,而其他原因包括载脂蛋白 B (apo B)、前蛋白转化酶枯草溶菌素/kexin 9 型 (PCSK9)、LDLR 衔接蛋白 1 (LDLRAP 1) 等各种基因突变。为了预防 FH 引起的心血管危机,必须尽早诊断并有效治疗。随着医学科学的研究和进步,许多旨在降低血液中 LDL 水平的现有和新型疗法正在涌现。
肥厚性心肌病 (HCM) 是一种遗传性心肌细胞疾病。研究表明,70% 的这种疾病是由各种肌节基因的不同突变引起的。本综述旨在讨论导致 HCM 发展的几种基因突变、表观遗传因素和信号转导通路。此外,本文还阐述了基因疗法的最新进展及其对治疗这种疾病的意义。我们首先讨论 HCM 中的创始突变及其对强力冲程产生的影响。本文重点介绍了表观遗传学中较少探索的领域,包括甲基化、乙酰化以及不同微小 RNA 在心肌肥大发展中的作用。详细阐述了导致基因转录的信号转导通路,进而导致心肌纤维蛋白质合成增加。最后,我们讨论了导致心力衰竭病理生理宏观事件的微观事件、基因治疗模型的当前实验试验以及成簇的规律间隔短回文重复序列 (CRISPR) 2 型系统蛋白。我们最后强调需要对 HCM 患者的表观基因组学和基因治疗实验设计进行更多研究。本综述重点介绍 HCM 从初始突变到表型表达的发展过程以及心肌肥大发展中的各种干预点。
A.S.C.,B.M.,D.C。撰写了手稿; B.G.D.,B.M.,C.V.L.,D.C。设计了研究项目; A.S.C.,C.Y.S.,D.C。设计了VCIRCTRAPPIST; A.S.C.,M.B.,M.G.,M.G.,S.M.,C.P.,L.V。 进行了研究并处理了样品; B.G.D.,N.A.G.,B.M.,C.V.L.,D.C。提供了试剂和样品; B.G.D.,B.M.,C.V.L。 获得了资金; A.S.C.,B.M.,D.C。分析了数据; M.B.,M.G.,M.G.,S.M.,C.P.,L.V.,C.Y.S.,B.G.D.,N.A.G.,C.V.L。 审查了手稿; D.C.是该项目的领导者。A.S.C.,B.M.,D.C。撰写了手稿; B.G.D.,B.M.,C.V.L.,D.C。设计了研究项目; A.S.C.,C.Y.S.,D.C。设计了VCIRCTRAPPIST; A.S.C.,M.B.,M.G.,M.G.,S.M.,C.P.,L.V。进行了研究并处理了样品; B.G.D.,N.A.G.,B.M.,C.V.L.,D.C。提供了试剂和样品; B.G.D.,B.M.,C.V.L。获得了资金; A.S.C.,B.M.,D.C。分析了数据; M.B.,M.G.,M.G.,S.M.,C.P.,L.V.,C.Y.S.,B.G.D.,N.A.G.,C.V.L。审查了手稿; D.C.是该项目的领导者。
丝状植物病原体将效应子蛋白传递到宿主细胞中,以抑制宿主防御反应并操纵代谢过程以支持定殖。这些效应子的进化和分子功能提供了有关发病机理的知识,并可以提出减少病原体造成的损害的新型策略。 然而,效应蛋白具有高度可变,共享弱序列相似性,尽管可以根据其结构进行分组,但迄今为止,只有少数几个结构保守的效应子家族在功能上表征了。 在这里,我们证明了锌指褶皱(ZIF)分泌的蛋白质在爆炸真菌麦芽汁中形成功能多样的效应子家族。 这个家族依靠锌指基序来用于蛋白质稳定性,并且在爆炸真菌谱系中无处不在感染13种不同的宿主物种,形成了不同的效应子部落。 在多个m中存在 canonical ZIF效应子AVR-PII的同源物AVR-PII。 oryzae谱系。 真菌的小麦感染菌株也具有像宿主exo70蛋白质并激活免疫受体PII一样的AVR-PII。 此外,ZIF部落可能在其与之结合的蛋白质上有所不同,表明功能多样化和复杂的效应子/宿主相互作用。 总的来说,我们发现了一个新的效应子家族,其蛋白质折叠在M的谱系中具有功能多样化。 oryzae。 这项工作扩大了我们对M多样性的理解。这些效应子的进化和分子功能提供了有关发病机理的知识,并可以提出减少病原体造成的损害的新型策略。然而,效应蛋白具有高度可变,共享弱序列相似性,尽管可以根据其结构进行分组,但迄今为止,只有少数几个结构保守的效应子家族在功能上表征了。在这里,我们证明了锌指褶皱(ZIF)分泌的蛋白质在爆炸真菌麦芽汁中形成功能多样的效应子家族。这个家族依靠锌指基序来用于蛋白质稳定性,并且在爆炸真菌谱系中无处不在感染13种不同的宿主物种,形成了不同的效应子部落。canonical ZIF效应子AVR-PII的同源物AVR-PII。oryzae谱系。真菌的小麦感染菌株也具有像宿主exo70蛋白质并激活免疫受体PII一样的AVR-PII。此外,ZIF部落可能在其与之结合的蛋白质上有所不同,表明功能多样化和复杂的效应子/宿主相互作用。总的来说,我们发现了一个新的效应子家族,其蛋白质折叠在M的谱系中具有功能多样化。oryzae。这项工作扩大了我们对M多样性的理解。oryzae效应子,植物发病机理的分子基础,最终可能有助于发展新的病原体抗性来源。
覆盖度在外显子组测序中达到最高,从27.7X到33.6X不等。外显子组的中位覆盖度从14X到100X不等,而基因组测序则从27X到33X不等。从受试者的覆盖度来看,对于外显子组测序,超过58.8%的受试者对所有变异的覆盖度超过10X,对于许多变异,这个值达到了100%。对于15X和20X的覆盖度也是如此,拥有这种覆盖度的受试者比例最低分别为49.9%和35.7%,在很多情况下,这个值达到了100%。对于基因组测序,超过99.1%的受试者对所有变异的覆盖度超过10X,对于许多变异,这个值达到了100%。 15X 和 20X 以上的覆盖率也是如此,具有此类覆盖率的受试者的最低比例分别为 96.0% 和 82.9%,在许多情况下,该值达到 99.3% 和 95.1%。这些来自外显子组和基因组测序的覆盖率统计数据确保了变异调用的高可信度,并强调了我们
* MD,JD,法学副教授,S.J。犹他州犹他州盐湖城大学的奎尼法学院。我感谢在AALS 2024会议上,特别是Lindsey Simon,Jennifer Oliva,Michael Francus,Alex Kreit和Howard Erichson在AALS 2024会议上,在小组演示中的参与者和评论者在“阿片类药物,破产和公共卫生中的热门话题”。此外,我感谢2024年西弗吉尼亚州法律评论研讨会的参与者,尤其是伊丽莎白·查伯·伯奇(Elizabeth Chamblee Burch)和安妮·洛法索(Anne Lofaso),以及西弗吉尼亚州法律评论的出色编辑和活动组织者,尤其是罗兹林·罗素(Rozlind Russell),尤其是史蒂芬·佩雷德(Steven Treadway),史蒂芬·佩雷德(Steven Treadway),萨姆·米勒(Sam Miller),艾米丽·米勒(Sam Miller),艾米丽·奥格登(Emily Ogden)和詹姆斯·詹姆斯·马佐(James Mazzone)。,我最大的感谢,感谢我令人难以置信的研究助理艾弗里·埃弗里(Avery Emery)。** MD,JD,MPH,密苏里州圣路易斯大学法学院法学中心法学中心助理教授。