摘要 — 过去几年,随着量子计算硬件的快速发展,人们开发了多种量子软件堆栈 (QSS)。QSS 包括量子编程语言、优化编译器(将用高级语言编写的量子算法转换为量子门指令)、量子模拟器(在传统设备上模拟这些指令)以及软件控制器(将模拟信号发送到基于量子电路的非常昂贵的量子硬件)。与传统的编译器和架构模拟器相比,由于结果的概率性质、缺乏明确的硬件规格以及量子编程的复杂性,QSS 难以测试。这项工作设计了一种新颖的 QSS 差分测试方法,称为 QD IFF,具有三大创新:(1) 我们通过保留语义的源到源转换生成要测试的输入程序以探索程序变体。 (2) 我们通过分析电路深度、2 门操作、门错误率和 T1 弛豫时间等静态特性,过滤掉不值得在量子硬件上执行的量子电路,从而加快差分测试速度。(3)我们通过分布比较函数(如 Kolmogorov-Smirnov 检验和交叉熵)设计了一种可扩展的等效性检查机制。我们使用三个广泛使用的开源 QSS 评估 QD IFF:IBM 的 Qiskit、Google 的 Cirq 和 Rigetti 的 Pyquil。通过在真实硬件和量子模拟器上运行 QD IFF,我们发现了几个关键的错误,揭示了这些平台中潜在的不稳定性。QD IFF 的源变换可有效生成语义等价但不相同的电路(即 34% 的试验),其过滤机制可将差分测试速度提高 66%。
有了动态二人计划,该企业拥有并为关键雇员的寿命支付永久人寿保险政策。雇主保留收回较大的付费保费或政策现金价值的权利。员工对政策现金价值不保留或访问政策现金价值。在退休前,员工的受益人将使用已知和IRS批准的方法(认可分差价)获得免税福利。雇主每年在其W2表格上向雇员报告应纳税的“经济利益”。经济利益是使用保护性生活的一年期限寿命率或IRS表2001率的。
摘要 干电极的使用正在迅速增加。由于干电极的阻抗很高,因此在电极和放大器之间的连接节点处有一个高阻抗节点。这会导致吸收电力线信号,而高 CMRR 放大器对于消除这种情况至关重要。在本文中,我们提出了一种具有高 CMRR 的低功耗低噪声斩波稳定放大器。为了最大限度地降低输入参考噪声,采用了基于反相器的差分放大器。同时,设计了一个直流伺服环路来抑制电极的直流偏移。由于所有级都需要共模反馈,因此每个放大器都使用了合适的电路。此外,在最后一级实施了斩波尖峰滤波器以衰减斩波器的尖峰。最后,为了消除失配和后期布局造成的偏移效应,采用了直流偏移抑制技术。设计的电路采用标准 180 nm CMOS 技术进行仿真。设计的斩波放大器在 1.2 V 电源下仅消耗 1.1 l W。中频带增益为 40 dB,带宽为 0.5 至 200 Hz。其带宽内的总输入参考噪声为 1 l V rms。因此,设计电路的 NEF 和 PEF 分别为 2.7 和 9.7。为了分析所提出的斩波放大器在工艺和失配变化下的性能,进行了蒙特卡罗模拟。根据 200 次蒙特卡罗模拟,CMRR 和 PSRR 分别为 124 dB(标准偏差为 6.9 dB)和 107 dB(标准偏差为 7.7 dB)。最终,总面积消耗为 0.1 mm 2(不含焊盘)。
CX1084 系列可调和固定电压调节器旨在提供 5A 输出电流,输入输出差压低至 1V。器件的压差在最大输出电流时保证最大为 1.5V,在较低负载电流时降低。片上微调可将参考电压调整至 1%。电流限制也经过微调,最大限度地减少过载条件下调节器和电源电路的应力。CX1084 器件与较旧的三端调节器引脚兼容,采用 3 引线 TO-220、2 引线 TO-252 封装以及 3 和 2 引线 TO-263(塑料 DD)封装。
GenevièveRouleau,Quan Nha Hong,Navdeep Kaur,Marie-Pierre Gagnon,JoséCôté等。在医疗保健研究中对系统定量,定性和混合研究评论的系统评论进行了综述:如何评估纳入评论的方法质量质量的评论?混合方法研究杂志,2023,17(1),pp.51-69。10.1177/15586898211054243。hal-04100878
潮间带的某些计划可能不高于BNG的“最小值”阈值,因此可以免于强制性要求。,例如一些电缆项目。对于在其发育红线中,潮间带的潮间带项目就是这种情况。如果在2年内将开发前的基线栖息地返回其基线状况,则BNG要求将不适用,因为它算作临时损失。对于某些潮间带(例如某些类型的电缆铺设)可能就是这种情况。这将取决于位置,栖息地类型和开发的细节。在《法定生物多样性公制用户指南》(第32页)中提供了更多细节。
本报告介绍了由环境、交通和地区部 (DETR) 资助、由国家物理实验室 (NPL) 在国家环境技术中心的支持下开展的工作,旨在测量陆上原油稳定厂的气体排放。测量是使用 BP Exploration Wytch Farm 收集站的 NPL 差分吸收激光雷达 (DIAL) 设施进行的。该站点从当地井场接收原油,稳定原油,分离液化石油气和天然气,然后通过管道出口产品。DIAL 设施用于测量站点所有区域的 VOC 受控和逸散排放。测量在 5 天内进行,从 1997 年 3 月 23 日到 1998 年 3 月 27 日。测量结果用于确定站点总排放因子的估计值为 -0.04% +- 0.005%(按质量计算)。
近十年来,人们提出了用于解决各种实际问题的量子算法,例如数据搜索和分析、产品推荐和信用评分。人们对量子计算中的隐私和其他伦理问题的关注自然而然地出现了。在本文中,我们定义了一个用于检测量子算法差分隐私违规的正式框架。我们开发了一种检测算法来验证(嘈杂的)量子算法是否具有差分隐私,并在报告差分隐私违规时自动生成窃听信息。该信息由一对违反隐私的量子态组成,以说明违规的原因。我们的算法配备了高效的数据结构 Tensor Networks,并在 TensorFlow Quantum 和 TorchQuantum 上执行,它们分别是著名机器学习平台 TensorFlow 和 PyTorch 的量子扩展。我们算法的有效性和效率得到了已经在现实量子计算机上实现的几乎所有类型量子算法的实验结果的证实,包括量子霸权算法(超出了经典算法的能力)、量子机器学习模型、量子近似优化算法和高达 21 个量子位的变分量子特征求解器。
An analytical study is carried out to obtain the approximate solution for the Magnetohydrodynamic (MHD) flow issue of Darcy-Forchheimer nanofluid containing motile microorganisms having viscous dissipation effect through a non-linear extended sheet employing a new approximate analytical method namely Ananthaswamy-Sivasankari Method (ASM) and also修改的同义分析方法(MHH)。衍生的分析解决方案以显式形式给出,并与数值解决方案进行比较。图形结果被交织在一起,以反映问题中涉及的各种物理参数的效应。比较并在表中进行了比较并显示了Nusselt数字,局部皮肤摩擦参数和舍伍德数的数值计算。使用此策略获得更快的收敛速度。通过此方法获得的解决方案更接近精确的解决方案。另外,该解决方案是最简单,最明确的形式。它适用于所有具有非零边界条件的初始和边界价值问题。可以轻松扩展此方法以解决其他非线性高阶边界价值问题中的物理,化学和生物学科学问题。
𝑡 次三角立方规则是环面上的点集,在这些点集上,总和可重现整个环面上 𝑡 次单项式的积分。它们可以被认为是环面上的 𝑡 -设计。受量子力学的射影结构的启发,我们发展了射影环面上的 𝑡 -设计的概念,令人惊讶的是,它们的结构比整个环面上的对应设计要严格得多。我们提供了这些射影环面设计的各种构造,并证明了它们的大小和结构特征的一些界限。我们将射影环面设计与一系列不同的数学对象联系起来,包括来自加法组合学领域的差集和 Sidon 集、来自量子信息论的对称、信息完备的正算子值测度 (SIC-POVM) 和相互无偏基 (MUB) 的完备集(据推测与有限射影几何有关)以及某些根格的水晶球序列。利用这些联系,我们证明了密集 𝐵 𝑡 mod 𝑚 集的最大大小的界限。我们还使用射影环面设计来构建量子态设计系列。最后,我们讨论了许多关于这些射影环面设计的性质的未解决的问题,以及它们与数论、几何和量子信息中的其他问题的关系。