•帮助官员和当选成员专注于最重大的风险•帮助官员和当选成员做出决定并充分理解理事会面临的风险和不确定性的全面理解•增加可能达到理事会目标的可能性•提高理事会的风险•允许稳定的风险•促进稳定的风险•促进知识范围•促进知识的稳定和分享,以促进知识的稳定和分享,使知识的稳定范围•促进知识的分享,使其及时分享,•提高知识的范围•理事会承担的风险在其容忍度或对风险的兴趣范围内•为内部控制和治理的决定和诉讼提供依据,以及反欺诈的意识•支持持续改进和服务计划•在本文档中概述了整个理事会中对风险管理策略的识别和理解的识别和理解。这列出了我们管理风险和不确定性的方法。
图 1.1 位置规划 ................................................................................................................ 29 图 2.1 分区规划 ................................................................................................................ 53 图 3.1 区域和水务公司水资源规划框架概览 .63 图 3.2 SESRO 多学科设计开发过程 ...................................................................... 65 图 3.3 潜在的进水口/出水口结构位置选项 ...................................................................... 68 图 3.4 主要通道选项 ............................................................................................. 72 图 3.5 Steventon 至 East Hanney 道路改道选项 ............................................................. 75 图 3.6 铁路侧线和材料处理区 - 搜索区域选项 ............................................................. 80 图 3.7 WTW 选项 ............................................................................................................. 84 图 5.1 EIA 流程 ............................................................................................................. 102 图 5.2 重要性矩阵 ............................................................................................................. 114 图 18.1 人类健康评估方法 ............................................................................................. 545 图 19.1 因 SESRO 项目而产生或可能影响 SESRO 项目的潜在风险 ................................................................................................................ 571 图 19.2 用于评估风险/事件可容忍度的 HSE 框架...................... 581 东南战略资源选项 EIA 范围界定报告 – 图表第 1 至 7 部分包含支持此 EIA 范围界定报告的所有图表。此外,本环境影响评估范围界定报告第 1.7 节结构第 1.7.4 段提供了完整的图表列表。图 1.1 位置图 ............................................................................................................. 29 图 2.1 分区规划 ............................................................................................................. 53 图 3.1 区域和水务公司水资源规划框架概览。63 图 3.2 SESRO 多学科设计开发过程 ...................................................................... 65 图 3.3 潜在的进水口/出水口结构位置选项 ...................................................................... 68 图 3.4 主要通道选项 ............................................................................................. 72 图 3.5 Steventon 至 East Hanney 道路改道选项 ............................................................. 75 图 3.6 铁路侧线和材料处理区 - 搜索区域选项 ............................................................. 80 图 3.7 WTW 选项 ............................................................................................................. 84 图 5.1 EIA 流程 ............................................................................................................. 102 图 5.2 重要性矩阵 ............................................................................................................. 114 图 18.1 人类健康评估方法 ............................................................................................. 545 图 19.1 因 SESRO 项目而产生或可能影响 SESRO 项目的潜在风险 ................................................................................................................ 571 图 19.2 用于评估风险/事件可容忍度的 HSE 框架......................... 581
本文描述并回顾了解决人机界面挑战的研究和潜在解决方案,使单个操作员能够通过一个界面控制多架无人机 (UAV)。作为一个系统,这也被称为多机器人系统 (MRS)。MRS 应用于多个领域,如环境监测 [1]、搜索和救援 [2, 3]、安全 [4]、机器人配送的监督控制以及探索性医疗保健中的微型和纳米机器人群 [5]。单个操作员同时控制多个机器人的优势(称为一对多关系)是改善资源分配、时间成本、稳健性和现实世界任务的其他方面 [6]。然而,由于单个操作员的认知工作量增加,增加机器人数量并不一定会提高系统性能 [7]。早期模型描述了单个操作员使用基于忽视容忍度的扇出控制的机器人数量、当操作员忽视机器人时机器人的效率如何随时间下降,以及交互时间、任务切换、建立上下文、计划和将计划传达给机器人所需的时间 [8]。该模型已扩展到包括等待时间和性能指标,以模拟给定任务约束的扇出水平 [9]。
第二章第二部分规定了进一步协调 ICT 风险管理工具、方法、流程和政策的条件,确定了:ICT 安全政策、程序、协议和工具的一般要素(第 1 节);ICT 安全政策、程序、协议和工具的具体要素(第 2 节):风险容忍度、进行 ICT 风险评估的方法、ICT 风险处理措施;ICT 资产管理政策(第 3 节);加密和密码控制政策(第 4 节);ICT 运营安全政策(第 5 节);网络安全管理政策(第 6 节);ICT 项目管理政策(第 7 节);物理和环境安全政策,以保护数据的可用性、真实性、完整性和机密性(第 8 节)。第二章确定了金融实体在制定人力资源和访问控制政策时应纳入的所有 ICT 安全要素。第三章确定了金融实体应制定和实施的 ICT 相关事件检测和响应政策的所有要素。第四章规定了金融机构应当编制和提交的信息和通信技术风险管理框架审查报告的内容和格式。
单独捕获的里德堡原子作为可扩展量子模拟和可编程量子计算机开发平台具有巨大潜力。具体而言,里德堡阻塞效应可用于通过编码物理量子比特的低位电子态来促进快速量子比特间相互作用和长相干时间。为了使现有的基于里德堡原子的平台更接近容错量子计算,我们在五个原子系统中展示了高保真状态和电路准备。我们特别展示了量子控制可用于可靠地生成完全连接的簇状态,并模拟基于 Laflamme 等人的“完美量子纠错码”的纠错编码电路 [Phys. Rev. Lett. 77, 198 (1996)]。我们的结果使这些想法及其实现可直接用于实验,并展示了对实验误差的良好噪声容忍度。通过这种方法,我们推动了量子控制在小型子系统中的应用,结合标准的基于门的量子电路,直接、高保真地实现少量子比特模块。
摘要 Argonaute (Ago) 蛋白是存在于真核生物和原核生物中的保守可编程核酸酶,可防御移动遗传元件。几乎所有已表征的 pAgo 都倾向于切割 DNA 靶标。本文,我们描述了一种来自 Verrucomicrobia 细菌的新型 pAgo (VbAgo),它可以在 37°C 下特异性地切割 RNA 靶标而不是 DNA 靶标,并可作为具有突出催化能力的多重周转酶发挥作用。VbAgo 利用 DNA 向导 (gDNA) 在规范切割位点切割 RNA 靶标。同时,在低浓度 NaCl 下切割活性显著增强。此外,VbAgo 对 gDNA 和 RNA 靶标之间的错配表现出较弱的容忍度,位置 11 至 12 的单核苷酸错配和位置 3 至 15 的双核苷酸错配会显著降低靶标切割。此外,VbAgo 可以在 37°C 下有效切割高度结构化的 RNA 靶标。VbAgo 的这些特性拓宽了我们对 Ago 蛋白的理解,并扩展了基于 pAgo 的 RNA 操作工具箱。
基于 CRISPR/Cas9 的基因编辑的引入大大加速了治疗性基因组编辑。然而,CRISPR/Cas9 蛋白的脱靶 DNA 切割阻碍了其临床转化,从而阻碍了其作为可编程基因组编辑工具的广泛使用。尽管已经开发出具有更好错配识别能力的 Cas9 变体,但它们的靶向 DNA 切割率明显较低。在这里,我们将来自新凶手弗朗西斯菌 (FnCas9) 的更特异性的天然 Cas9 与最广泛使用的 SpCas9 蛋白的动力学进行了比较。对两种 Cas9 蛋白的游离形式和 gRNA 结合形式进行了长期原子 MD 模拟,并比较了它们的域重排和与 gRNA 的结合亲和力,以揭示 FnCas9 蛋白特异性增强的可能原因。与 SpCas9 相比,FnCas9 与 gRNA 的结合亲和力更大、域静电更大、波动性更大,这可以解释其特异性增强和对错配的容忍度更低。
紫杉醇白蛋白在28天治疗周期的第1、8和15天与Pembrolizumab* 200mg合并每3周或400mg每6周结合使用。继续进行,直到疾病进展或难以控制的毒性或患者选择,但是pembrolizumab在治疗2年后必须停止(或35 x 3周周期或相当于6周的pembrolizumab,paclitaxel-thece)(Paclitaxel-axel-thecles bound)(可能还可以继续))。nb:如果紫杉醇白蛋白结合必须因毒性而停产,则可以继续作为单一药物继续前进。必须安排在治疗的前8周结束之前进行正式的医学审查,以评估容忍度以及是否继续治疗。nb该协议中紫杉醇白蛋白的剂量和时间表目前不是转移性乳腺癌的许可剂量和时间表。临床医生在开处方无执照的剂量时必须注意自己的责任。*当pembrolizumab和紫杉醇白蛋白结合在同一天给药时,请先给出pembrolizumab。监视参数预处理
认识到在大规模分布计算中对弹性的需求日益增长的需求,ICL在2000年代初引入了容忍度的MPI(FT-MPI),集成了优雅处理过程失败并增强应用程序可靠性的机制。随着HPC体系结构变得更加复杂,ICL开发了Parsec(2012),这是一个基于任务的运行时框架,可以高效地执行分布式和异构体系结构。PARSEC优化资源利用率,动态适应现代计算平台,并已成为Exascale计算的基本工具。它的影响已得到广泛认可 - 在过去的三年中,它在三个戈登·贝尔奖决赛选手项目中发挥了关键作用,最终在2024年在SC24赢得了历史性的胜利。ICL继续完善和扩展Parsec的能力,确保以创新,高性能的解决方案满足未来分布式计算挑战。
摘要:我们报告了一种嵌段共聚物 (BCP) 定向自组装 (DSA) 的方法,其中第一层 BCP 膜部署均聚物刷或“墨水”,这些刷或“墨水”在现有聚合物刷上方的聚合物膜热退火期间通过聚合物分子的相互渗透依次接枝到基材表面。通过选择具有所需化学性质和适当相对分子量的聚合物“墨水”,可以使用刷相互渗透作为一种强大的技术,以与 BCP 域相同频率生成自配准的化学对比模式。结果是一种对引导模式中的尺寸和化学缺陷具有更高容忍度的工艺,我们通过使用均聚物刷作为引导特征而不是更坚固的可交联垫来实现 DSA 来展示这一点。我们发现使用“油墨”不会影响线宽粗糙度,并且通过实施稳健的“干剥离”图案转移,验证了 DSA 作为光刻掩模的质量。关键词:定向自组装、嵌段共聚物、薄膜、先进光刻、缺陷率■ 简介