在过去的十年中,由于其可持续性和力量,竹子引起了很多关注。竹子比其他天然纤维的优势包括其丰富的存在,高产量以及在3 - 8年内迅速达到最大高度和强度的能力。竹子可用作独立的结构材料和混凝土钢筋,形式为竹制,竹夹板和竹子复合杆,用于低层和低成本建筑。在这项研究中,采用竹棍作为混凝土立方体的加固。考虑了以下影响因素:竹棍的体积比为0.6%,1.2%和2.4%,竹棒直径为1毫米,1.5毫米和2毫米,以及10、20和30的竹棒纵横比的纵横比比。测试结果表明,添加了0.6%的棍子,BSRC抗压强度分别为20和30的长度比率分别上升了3.24和17.33%。通过添加1.2%和2.4%的竹棍,长度为10乘21.38和20.94%,可以增强样品的抗压强度。将获得的结果与常规混凝土立方体的机械性能进行了比较。目前,河岸和淡水是制造混凝土中最常使用的材料。河岸和淡水的广泛使用导致了重大的环境问题。由于世界上许多地方都缺乏适当的淡水供应,因此不建议过度使用这种资源。因此,使用盐水和海沙制成竹棒钢筋混凝土和普通混凝土标本。最后,提出了强度和应力应变模型。
原子层沉积允许精确控制膜厚度和形式。它是高纵横比结构(例如3D NAND记忆)的关键推动因素,因为它的自限性行为比传统过程更高的合并性。然而,随着纵横比的增加,经常发生与完全保征的偏差,需要全面的建模以帮助开发新技术。到此为止,我们为存在不完整的整合性的原子层沉积过程中提供了一个模型。该模型结合了基于Knudsen扩散和Langmuir动力学的现有方法。我们的模型通过(i)通过Bosanquet公式融合了气相扩散率以及在Yanguas-Gil和Elam首先提出的建模框架中的反应可逆性,以及(ii)有效地集成在级别设定的地形模拟器中。该模型在侧面高纵横比结构中手动校准了Al 2 O 3的原型原子层沉积结果。我们研究了h 2 o步的温度依赖性,从而提取了0的活化能。178 eV与最近的实验一致。在TMA步骤中,我们观察到Bosanquet公式的精度提高,并以相同的参数集复制了多个独立的实验,这突显了模型参数有效地捕获了反应器条件。