偏置电阻由完全隔离的薄膜电阻组成,以允许输入负面偏置。它们还具有几乎完全消除寄生效应
MMIC的微波包装的主要目标之一是保存所需的RF属性。在放大器MMIC的情况下,相对于包装的最关键属性是向前增益,输入匹配,反向隔离,增益平坦和稳定性。基于LTCC的方法是包装MMIC的有趣选择。陶瓷载体形成了用于电线粘合和翻转芯片的粘合基板,可用于整合高质量的被动剂。集成的阻止电容器可以降低组装成本,并以低额外的成本来实施诸如RF过滤和防止静电放电之类的其他功能[4]。对于模具附着,Flip-Chip由于flip-Chip跃迁的良好发电性和低寄生电感而引起了人们的注意。但是,在实践中可以看出,Flip-Chip还需要处理特定的寄生效应,这些寄生效应将芯片倒挂在金属表面上时,例如在大多数丝网键入方法中完成的金属表面[3] [5]。
摘要 — 为了更好地预测功率转换器中晶体管的高频开关操作,必须准确评估这些器件的接入元件,如电阻和电感。本文报告了使用 S 参数对氮化镓 (GaN) 封装功率晶体管进行特性分析,以提取源自欧姆接触和封装的寄生效应。在封装晶体管时,使用在 FR4 印刷电路板 (PCB) 上设计的特定测试夹具设置校准技术,以便从测量的参数中获取晶体管平面中的 S 参数。所提出的方法基于改进的“冷 FET”技术和关断状态测量。它应用于市售的增强型 GaN HEMT(高电子迁移率晶体管)。将提取的寄生元件与器件制造商提供的参考值进行比较。还评估了结温对漏极和源极电阻的影响。最后,提出了这些寄生效应的电热模型。
• 增益和频率调整的灵活性:由于运算放大器可以提供电压增益,有源滤波器中的输入信号不会像无源滤波器那样衰减。有源滤波器的调整或调谐非常容易。• 无负载效应:由于运算放大器的输入电阻高、输出电阻低,有源滤波器不会导致输入源或负载的加载。• 成本和尺寸:由于可以使用低成本运算放大器并且不需要电感器,有源滤波器比无源滤波器便宜。• 寄生效应:由于有源滤波器尺寸较小,因此寄生效应较少。• 数字集成:模拟滤波器和数字电路可以在同一 IC 芯片上实现。• 滤波功能:有源滤波器可以实现比无源滤波器更广泛的滤波功能。• 增益:有源滤波器可以提供增益,而无源滤波器通常会产生很大的损耗。
在集成电路的大部分历史中,片上互连线被认为是二等公民,只有在特殊情况下或进行高精度分析时才需要考虑。随着深亚微米半导体技术的引入,这种情况正在发生快速变化。由互连线引入的寄生效应表现出与晶体管等有源器件不同的缩放行为,并且随着器件尺寸的减小和电路速度的提高而变得越来越重要。事实上,它们开始主导数字集成电路的一些相关指标,如速度、能耗和可靠性。由于技术的进步使得生产越来越大的芯片尺寸在经济上可行,这导致互连线的平均长度和相关的寄生效应增加,这种情况更加严重。因此,仔细深入地分析互连线在半导体技术中的作用和行为不仅是可取的,而且是必要的。
• 半导体材料的特性 • 半导体二极管 • 双极晶体管(npn 和 pnp) • 双极晶体管的特性 • Ebers-Moll 和 Gummel-Poon 模型 • 双极晶体管的 Spice 参数 • 用作开关的晶体管、有源区和反向区、饱和度 • 用作小信号放大器的晶体管、小信号参数和工作点的计算 • 频率响应的计算 • 米勒定理 • 谐波和失真的评估 • 电流源和电流镜 • JFET • n-MOS 和 p-MOS FET • FET 工作点的计算 • FET 作为小信号放大器 • 集成基础 • CMOS 反相器 • 集成电路中的寄生效应
在本研究中,我们通过测量逆自旋霍尔效应,用实验证明了传播的 SPP 诱导自旋电流,首次证明了传播的 SPP 和自旋电流之间的相互转换性。为了确认 SPP 诱导自旋电流的存在,需要消除由激光引入局部加热引起的其他寄生效应,比如自旋量热器产生的自旋电流。这通过三项测量实现了;(i) 逆自旋霍尔效应的反向对准,(ii) s 和 p 极化引入,以及 (iii) 逆自旋霍尔效应的入射角依赖性。所展示的结果可用于开发基于 SPP 的光自旋电子耦合器,作为自旋电子器件和光学数据传输或存储之间的接口。
为了满足人工智能 (AI) 和高性能计算 (HPC) 等数据密集型应用的需求,需要更紧密的集成以最大限度地减少电气互连延迟和能耗。遗憾的是,随着器件规模缩小,片上互连寄生效应变得越来越重要,因此纳米级 CMOS 技术的传统器件规模缩小正在放缓。因此,人们对 3D 异构集成技术的兴趣日益浓厚,台积电的 SoIC [1] 和 AMD 的 3D V-Cache [2] 技术就是明证。3D 异构集成技术具有高密度互连、带宽和低功耗的潜力 [3],但由于材料和小尺寸,键合技术存在局限性,这可能会带来挑战。例如,μ 凸块已采用回流或热压工艺制造,然而,随着其间距缩小,凸块下金属化 (UBM) 厚度开始成为瓶颈 [4- 5]。
摘要 — 微电子热敏电机 (TE) 发电机 (μ TEG) 是一种常见的潜在解决方案功率发电机和单相集成电路 (IC)。由于 µ TEG 电路中的寄生电阻和热阻,因此存在性能限制。寄生效应或曼塞洛斯可能会严重影响使用相对低 TE 性能指标(如硅 (Si))的 TEG 器件。在这种情况下,必须仔细注意整个 TEG 电路,而不仅仅是 TE 材料特性。这里,μ TEG 器件的定量模型包括所有与 I C 兼容的常见的重要电和热寄生器件。该模型提供了有关可再生能源发电和效率的耦合方程组或数值解。考虑到现场的抗裂性和实际性能值,该模型显示了 TE 元件总横截面的横截面积热比(称为“包装分数”)。在整个区域或在其流动区域,可以指定功率或效率,但不能同时实现两者。对于实际的材料和设备参数,优化系数通常为 1 % – 1 0 %,低于许多 µ TEG 设计中使用的值。模型说明了一些 TEG 示例的发电情况,并提供了显着的性能或改善效果的设计。索引术语——能源采集、热电 (TE)、TE 发电机。