糖尿病是全球增长最快的慢性疾病,其患病率比心脏病和癌症更快。虽然该疾病在临床上作为慢性高血糖症呈现,但已经识别出两种不同的亚型。1型糖尿病(T1D)的特征是一种自身免疫性疾病,其中产生胰岛素的胰腺B细胞被破坏,并且由于代谢不足而引起的2型糖尿病(T2D)产生,在这种情况下产生了胰岛素不足的胰岛素含量,而胰岛素是胰岛素的不足。现在很明显,促弹性反应会导致功能性B-细胞质量损失,这是T1D和T2D的共同基础机制。巨噬细胞是疾病发病机理中的中心免疫细胞,在损害B细胞功能的促进症反应的启动和延续中起主要作用。此外,巨噬细胞和b细胞之间的串扰策划了炎症反应并随之而来的B-电池功能障碍/破坏。相反,此串扰可以诱导B细胞质量和功能的免疫耐受性和保留。因此,针对巨噬细胞和B细胞之间细胞间通信的特定针对的是防止/停止胰岛弹性事件的独特策略。由于其有效调节哺乳动物免疫反应的能力,寄生虫(蠕虫)及其排泄/分泌产物,已被检查,以作为其作为T1D和T2D的治疗剂的潜力。这项研究在临床和动物模型中都取得了预防疾病的积极结果。然而,研究的重点一直放在免疫细胞及其效应子的调节上。这种方法忽略了蠕虫及其产物对B细胞的直接影响,以及巨噬细胞和B细胞之间信号交换的调节。本综述探讨了蠕虫及其产物引起的巨噬细胞的改变如何与B细胞相互影响以促进其功能和生存。此外,讨论了寄生虫衍生产品直接与内分泌细胞相互作用的证据,以影响其与巨噬细胞的交流以防止B细胞死亡和增强功能。内分泌细胞和巨噬细胞之间双向代谢对话的新范式为治疗免疫介导的代谢疾病的治疗开辟了新的途径。
摘要背景:随着动物生产的扩大,寄生蠕虫的经济重要性日益增加。然而,由于几种已建立的驱虫剂的特异性较低,它们的应用可能会损害受治疗的宿主和环境。此外,表现出抗性的寄生虫菌株数量正在增加,而几乎没有开发出新的驱虫药。在这里,我们提出了一种生物信息学工作流程,旨在减少开发新的抗寄生虫策略的时间和成本。该工作流程包括定量转录组学和蛋白质组学、3D 结构建模、结合位点预测和虚拟配体筛选。它被证明可用于鱼类养殖中一种新兴害虫——棘头虫 (Acanthocephala)。我们从四种鱼类 (普通鲃鱼、欧洲鳗鱼、薄唇鲻鱼、大头鲻鱼) 中选取了三种棘头虫 (Pomphorhynchus laevis、Neoechinorhynchus agilis、Neoechinorhynchus buttnerae)。结果:该工作流程在棘头鱼中产生了 11 个高度特异性的候选靶标。候选靶标在确定宿主和偶然宿主中表现出恒定且升高的转录丰度,表明其具有组成性表达和功能重要性。因此,相应蛋白质的损伤应该能够特异性和有效地杀死棘头鱼。候选靶标在棘头鱼体壁中也非常丰富,这些无肠寄生虫通过体壁吸收营养。因此,这些候选靶标很可能与口服给鱼的化合物接触。虚拟配体筛选产生了十种化合物,其中五种根据 ADMET、GHS 和 RO5 标准似乎特别有希望:他达拉非、普拉那匹特、吡酮洛芬、海利霉素和杀线虫剂德奎特尔。结论:基因组学、转录组学和蛋白质组学的结合产生了一种广泛适用的程序,可以节省成本和时间地识别寄生虫中的候选靶蛋白。现在可以进一步评估预测结合的配体是否适合控制棘头虫。工作流程已存放在 Galaxy 工作流程服务器中,URL 为 tinyurl.com/yx72rda7 。关键词:寄生虫、驱虫药、靶分子、虚拟配体筛选、活性成分、医学基因组学
从人类疟疾寄生虫的基因组分析中获得的见解使我们对碱性疾病生物学,耐药性,疟疾流行病学和分子生态学的理解有所了解。技术进步以及分子和基因组工具的成本降低的消除措施,包括大规模(> 20,000个恶性疟原虫全基因组),合作的努力,以产生公开可用的人群水平的整体基因组数据以及对靶向测序的使用方法,以监测实时基因属于实时的基因种群。这项工作的大部分都集中在引起寄生虫的寄生虫的原发性人麦芽膜上。然而,由于许多国家通过这两种物种造成的疟疾消除,包括研究不足的人畜共患病诺里斯(P. Knowlesi)在内的其他疟疾寄生虫正在变得越来越关注。因此,我们研究计划的一部分是使用尖端的基因组和生物信息学技术来更好地了解P. Knowlesi的生物学,生态学和流行病学。这项工作是与马来西亚,印度尼西亚,新加坡,泰国,英国,美国和荷兰以及澳大利亚的海外合作伙伴进行的。我们以基因组为中心的计划涉及全基因组关联研究,大规模的种群遗传学分析以及分子监测工具的发展。我们的最终目标是为东南亚的疟疾消除努力做出贡献。
。cc-by-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月28日。 https://doi.org/10.1101/2024.10.19.619196 doi:Biorxiv Preprint
多细胞生物生活在包含各种营养和各种微生物群落的环境中。一方面,生物体的免疫反应可以保护外源微生物的侵入。另一方面,生物体的合成代谢和分解代谢的动态协调是生长和繁殖的必要因素。由于产生免疫反应是一种能量密集型过程,因此免疫细胞的激活伴随着代谢转化,使ATP和新生物分子的快速产生。在昆虫中,免疫和代谢的协调是应对环境挑战并确保正常生长,发育和繁殖的基础。在通过致病性微生物激活昆虫免疫组织期间,不仅可以增强有机资源的利用,而且活化的免疫细胞也可以通过产生信号来篡夺非免疫组织的营养。同时,昆虫的体内也有共生细菌,这可以通过免疫 - 代谢调节影响昆虫的生理。本文从昆虫组织的角度(例如脂肪体,肠道和血细胞)回顾了昆虫免疫代谢调节的研究进度。在这里阐述了微生物(致病细菌/非病原细菌)和寄生虫对免疫代谢的影响,这为揭示昆虫和哺乳动物的免疫代谢机制提供了指导。这项工作还提供了见解,以利用免疫代谢来制定害虫控制策略。
图 2 对 122 个蚂蚁差异表达基因中的 120 个进行聚类和可视化。根据基因的表达模式,可将其分为三个簇:(a)簇 1、(b)簇 2 和(c)簇 3。使用 topGO 和 weight01 算法计算这些簇的 GO 富集分析(簇 1 为 d、簇 2 为 e、簇 3 为 f),并使用 Fisher 精确检验将簇的生物学过程的 GO 注释与整个转录组进行比较。每个条形图代表每个簇中显著富集的 GO 术语,x 轴代表显著基因的数量。
据报道,由木源性真菌(如Biscogniauxia Mediterranea)引起的橄榄树疾病的增加会造成严重损害。由于这种植物在地中海国家的重要性,需要寻找控制这种疾病的可持续措施。选择了velezensis的菌株OEE1,以评估其控制这种真菌的潜力。结果表明,双板测定达到87%并产生微观菌丝体改变,结果表现出较高的拮抗活性。在PDA培养基中掺入不同量的粗糙扩散代谢物时,发现浓度为75%的地中海芽孢杆菌的径向生长总抑制。该病原体认为该浓度被认为是杀真菌剂。生长抑制作用伴随着孢子发芽的阻塞。还评估了对2年历史的橄榄树CV Chemlali的拮抗潜力评估,以预防和经过治疗后,在与地中海芽孢杆菌进行了人工接种后,溃疡剂出现了。这项研究提供了有价值的发现,以鼓励将B. velezensis OEE1用作橄榄树中木炭溃疡病的合适生物防治剂。
隐孢子虫是一种严重公共卫生问题的原生动物寄生虫,是严重的腹泻疾病,特别是在资源有限的环境中的免疫功能低下的个体和幼儿中。分析整个基因组下一代测序(NGS)数据是提高我们对隐孢子虫流行病学,传播动力学和遗传多样性的了解的关键下一步。但是,对公共卫生环境中NGS数据的有效分析需要开发可靠的,经过验证的生物信息学工具。在这里,我们提出了Parapipe,这是一种模块化的ISO认证生物信息学管道,旨在用于高通量处理和隐孢子虫NGS数据集的高通量处理和分析。使用NextFlow DSL2构建并用奇异性进行了容器,Parapipe是便携式,可扩展的,并且能够端到端分析,包括质量控制,变体呼叫,感染多样性(MOI)研究(MOI)研究和系统基因组群集分析。
方法:本研究采用横断面研究,研究对象为从亚的斯亚贝巴当地市场采集的水果。采用方便抽样。假设每个摊主提供 30 个样品,共采集了 120 个水果样品。水果样品收集在已消毒的塑料袋中,然后带到实验室进行细菌和寄生虫学调查。所有样品均进行了肠道寄生虫和细菌污染检查。使用 SPSS 软件版本 25 分析数据。使用 Pearson 卡方检验评估分类变量。使用学生 t 检验比较连续变量,连续变量以平均值±标准差表示。使用单变量和多变量分析,计算优势比 (OR) 和 95% 置信区间 (CI)。统计学显著性定义为 P < 0.05。
本文已接受出版并经过完整的同行评审,但尚未经过文字编辑、排版、分页和校对过程,这可能会导致此版本与记录版本之间存在差异。请引用本文 doi: 10.1111/MMI.14821