电力高压釜由电力提供动力,该电力会加热腔室中的水以产生蒸汽。在高压灭菌器中,有一些要灭菌的物品的架子。如果超出安全限制,则包括安全阀以释放过多的压力。高压灭菌器配备了压力表,以测量隔灭周期完成后的压力和密封室的紧密盖盖,排放尖端可以安全释放蒸汽和从腔室的压力。
植物修复是植物及其根部微生物去除空气和水中污染物的过程。这些净化特性是在太空居住实验中发现的:20 世纪 80 年代,约翰·C·斯坦尼斯航天中心的科学家揭示了室内植物从密封室中去除挥发性有机化学物质 (VOC) 的能力。进一步的研究,包括建造一个专用设施 Biohome,带来了科学突破,并有助于了解如何最大限度地发挥室内植物净化空气的能力。实验表明,由于植物叶子和根部微生物的共同作用(通过代谢、转移和/或蒸腾),室内植物能够去除封闭系统中不断释放的 VOC。
电阻计量校准服务不断提升其能力,并建立了维护标准电阻器的新方法和改进方法。尽管这些方法质量很高,但仍然存在同时可测量电阻器数量及其空气环境温度稳定性的固有限制。在此背景下,我们报告了标准电阻器精密温控室的设计、开发和初步测试的进展,该温控室可提供稳定性为 ± 6 m ° C 的恒温环境。实现这种稳定性涉及根据气流模拟定制室设计。此外,微处理器编程允许在非密封室配置内优化气流,以减少室温恢复时间。进行了进一步的测试以提高控制系统的稳定性和室的效率。
确保空间有限的系统中的适当细胞生长,例如微流体技术,对于一致的培养比较和结果至关重要。在本报告中,我们主要介绍SH-SY5Y细胞在具有不同表面积的圆形聚碳酸酯圆形杂种上的增殖。,我们选择了SH-SY5Y细胞,因为它们在神经模型生成疾病的研究中的广泛应用。我们的研究表明,该菜的表面积与细胞生长速率之间存在明确的联系。显然是,直径为10 mm或更多的腔室的细胞生长与标准碟培养物的匹配。观察结果表明,随着腔室直径降低,SH-SY5Y细胞的生长也明显降低,即使具有相同的初始播种密度。此外,我们比较了对HelagFP细胞的影响,后者表现出与SH-SY5Y细胞相似的行为,而16HBE14σ细胞在各种直径下显示出有效的增殖。此外,我们检查了直径为12 mm的密封室中SH-Sy5Y细胞的发展,以观察其在有限的气体交换条件下的生长。使用实时微观范围持续监测细胞的效力以捕获动力学。结果表明,OBSES细胞生长与标准培养皿的生长相当。
过去 50 年来,风洞已广泛应用于工业和研究领域。它们的规模和几何形状差异很大,有些大到足以容纳和测试小型飞机(例如 NASA、ATP 设施),而另一些则是用于校准小型传感器的微型气流发生器。但是,它们总是使用相同的基本技术和设计元素。同样,环境模拟器也在研究中得到广泛应用,例如在气候和行星研究中。在这里,它们在尺寸和配置上再次存在很大差异,但基本上由具有某种形式的温度控制的密封室组成 [Jensen 等人2008]。因此,在风洞和环境模拟器设计领域已成功应用了各种标准且通常是商业化的技术和施工技术。本章将概述其中一些技术和方法,以帮助研究人员或技术开发人员设计或使用环境风洞,同时也为这些研究领域的新手提供信息指南。环境模拟器和风洞的融合是基于实验室技术的自然演变,以满足重现自然界中特定物理条件的需求。虽然这种设施现在才刚刚得到充分开发,但它们有可能扩展到一个新的研究领域,这可能对我们了解气候做出重大贡献,并促进先进传感器技术的发展。本章将介绍设计和建造环境风洞的许多挑战,并提出可能的解决方案,重点放在极端陆地和火星行星条件上。此外,还将讨论许多不同的科学和工业应用。一般而言,环境风洞目前已用于测试和校准各种气象传感器,尤其是风流传感器(风速计)。风洞在土木工程和城镇规划中的应用正变得越来越普遍。在这里,通过风洞模拟和建模建筑物周围和建筑密集区域的气流可能有助于避免在大风或暴风雨期间产生高风切变和危险涡流。此类模拟还可以帮助设计和放置风力发电系统(例如风力涡轮机)。雷诺方程开发的形式化缩放定律允许进行测量,例如在较小规模的实验室风洞中,其产生与自然环境中产生的相同(或极其相似)的流动 [Monin 和 Yaglom