3D Plus是通过我们独特的3D垂直互连技术小型化的高级高密度辐射耐受组件的世界领先的供应商。在太空中拥有超过200,000个模块,并且没有报告失败的25年以上的飞行遗产,我们为所有类型的应用提供了全球空间行业:电信,地球观察,导航,发射和载人太空车辆,科学任务和恒星。
脉冲功率加速器在时空中压缩电能,以提供高能密度和惯性结合融合科学的多功能实验平台。Sandia National Laboratories的80-TW“ Z”脉冲功率设施是当今世界上最大的脉冲动力设备。z在其电容器库中储存多达22 MJ的能量,在低敏感性圆柱靶标中以高达30 mA的峰值在100 ns中升高,峰值上升。在过去的15年中,在将脉冲力作为精确的科学工具中取得了巨大进展。本文回顾了桑迪亚在惯性融合,动态材料,X射线辐射科学和脉冲动力工程方面的发展,自2005年对Z物理学的Z研究研究以来,重点是进步。
•τ〜∞⇒H |质子⟩= m |质子⟩,(纯)能量特征态。•Parton模型将质子视为几乎自由颗粒的收集•建议解决此明显悖论的分辨率:量子纠缠(Arxiv.1702.03489,Kharzeev&Levin)•发明:发明:观察到的Parton的降低密度矩阵是粒子数量基础数
石墨烯是第一种真正的二维材料,[1] 是形成简单六边形晶格的单层碳。剥离的石墨烯薄片表现出了高迁移率和异常量子霍尔效应 (QHE) 等显著的电学特性,引起了人们对其在许多实际应用中的极大兴趣。[2–5] 然而,由于剥离的石墨烯薄片的尺寸限制(通常高达几十微米),石墨的机械剥离无法提供适用于商业晶圆尺寸电子器件或精确电阻计量的石墨烯。当 SiC 衬底在超高真空或惰性气体氛围中以高于 1000°C 的温度退火时,Si 升华后碳会残留在 SiC 表面并重新排列形成石墨烯层。这种外延石墨烯 (EG) 已准备好用于大规模器件制造,无需转移到另一个绝缘基板上。在六边形 SiC 晶片的硅端面 (Si 面) 上生长的石墨烯由于与 SiC 晶体的方位角取向一致,可以形成大域。与在相反 (碳) 面上生长的石墨烯相比,在 Si 面上,EG 还具有更可控的生长动力学。最近,通过优化
夹带是一个系统与另一系统的相匹配的现象。人类神经活动已显示出与外听性刺激产生共鸣。当我们欣赏音乐时,带有听觉信号的大脑反应引起了共鸣。音乐认知的症结是基于具有内在神经频率的音乐频率的共鸣。也已经证明,在听音乐的同时,神经活动在跨参与者之间进行了同步,这是由高主体间相关性显示的。在这项工作中,我们使用这一事实来预测参与者对脑电图对drumbeat的反应的听力。我们还测试了是否可以在较小的数据集上训练并使用数据集的其余部分进行测试。我们将频率 *通道图构成,并将其馈送到CNN模型中,以预测60-20-20(火车-DEV检验)数据拆分协议的分类精度为97%的Drumbeat,而20-20-60数据拆分的精度为94%。我们还获得了100%的分类精度,用于预测两个数据拆分协议的参与者。
图 1 用于评估人为栖息地改变 (HA) 和气候对白尾鹿的相对影响的相机群位置。深灰色阴影表示加拿大环境与气候变化部绘制的 HA,缓冲距离为 500 米(加拿大环境与气候变化部,2017 年),浅灰色阴影表示绘制 HA 的测绘边界。相机群通过使用 5 年多因素分析确定的气候维度 1 进行着色,因此较高的值(即较冷的颜色)代表更严酷的冬季。使用随机位置生成器将相机随机放置在 12.5 公里 x 4 公里的区域内,树上间隔至少 1 公里,所有相机都朝北以避免太阳对图像的干扰。插图描绘了研究区域相对于加拿大的关系,而开头的图像描绘了每个相机群内随机放置相机陷阱的示例。地图线划定了研究区域,并不一定描绘公认的国界。
图 1:单层结构,(ab) 碘化铅-PbI 2 ,(cd) 氧化铅 PbO ,(ef) 氧化锡 SnO ,(gh) 硫化铟-InS ,(ij) 硒化铟-InSe ,分别为顶视图和透视侧视图。(k) PbO 和 SnO ,(l) PbI 2 ,InS 和 InSe 的第一布里渊区路径。原子颜色代码:黑色=Pb,紫色=I,红色=O,浅蓝/灰色=Sn,浅粉色=In,黄色=S,绿色=Se
量子密钥安全通信协议通过增强的超密度编码Mario Mastriani摘要在过去几十年中,量子密码学已成为量子通信的最重要的分支之一,并在未来的量子互联网上进行了特定的投影。正是在量子密码学中,其中两种技术高于其他所有技术:量子密钥分布(QKD)和量子安全直接通信(QSDC)。第一个具有四个漏洞,该漏洞与通信系统中所有点的钥匙暴露有关,而第二个则在当前使用的所有变体中都有明确的实施问题。在这里,我们提供了QKD和QSDC技术的替代方法,称为Quantum Key Secure Communication(QKSC)协议,并在两个免费的访问量子平台上成功实现。关键字量子纠缠•量子互联网•量子中继器•量子传送范围ID:0000-0002-5627-3935 MARIO MASTRIANI:mmastria@fiu.edu knight knight knight Computing and Computing and Computing&Information of Computing and Information of Compution and Information of Modight of Information&Information of Information of Information of Information of Information of Florida International University,11200 S.W.迈阿密,佛罗里达州第8街33199,美国1简介迈阿密,佛罗里达州第8街33199,美国1简介
基本材料特性由核,电子质量及其相互排斥的势能下的电子确定。从材料到材料的变量是离子电位。计算电子特性的逻辑过程是从电势到电子分布。这可以实现从原子和分子到固体的材料特性的实际计算。由于许多人的努力,这种方法已经开花了。该概念类似于从山丘和山地的景观中改变人口分布的预测,从人口分布中确定景观。在原子系统中,量子怪异允许此开关,但指出它在量子状态的层析成像中只是一个切片。作者分享了他从这个切片中的发展方面的经验,但接近与人口切换景观的有力概念。