本研究介绍了一种用于测量电解质密度和评估铅电池分层的新电化学方法的开发和验证。所提出的方法基于两个电极之间的电位差,一个电极由 PbO 2 组成,另一个电极由 Pb 组成,两个电极均通过循环伏安法制备和表征。通过X射线衍射(XRD)和扫描电子显微镜(SEM)证实了电极的形成及其形貌,揭示了特征性的三维结构的存在。使用已知密度的电解质溶液进行的测试表明,测得的电位差和电解质的实际密度之间存在极好的相关性,与使用便携式数字密度计进行的测量相比,精度为±0.001 g/cm3。该方法在60Ah商用电池中进行了铅电池的实际应用,验证了所提出的技术,并与商用设备获得的数据显示出显著的相关性。电解质分层是铅电池中的一个关键问题,而开发的方法提供了一种有效且低成本的工具来监测这种现象。该技术可应用于各种研究项目,以提高铅电池的性能和耐用性。
。CC-BY 4.0国际许可证。根据作者/资助者,它是根据预印本提供的(未经同行评审的认证),他已授予Biorxiv的许可证,以在2025年1月16日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2025.01.16.633327 doi:Biorxiv Preprint
有机材料的厌氧消化(AD)被认为是减少温室气体排放的有效方法,尤其是当与碳捕获和储存结合时。虽然生命周期评估(LCA)已被广泛用于评估AD系统的环境可持续性,但经济方面受到了较少的关注。最近的研究探索了财务利益,包括减少温室气体(GHG)的收入(碳信用额)。但是,参与碳交易并最大化实际广告项目的经济利益的实际意义仍然是一个挑战。要有效参与,AD系统必须成为经过验证的碳偏移方案。这需要遵守特定的碳偏移标准。实现认证需要在各种过程阶段证明有效的温室气体排放减少。在AD系统中捕获碳捕获和存储被视为实现负排放的成本效益方法。然而,由于附带CO 2或温室气体排放以及其他可能抵消所需的负排放的因素,可能会出现挑战。虽然AD项目提供了负面排放的潜力,但对相关的温室气体排放的深入分析至关重要。AD系统操作员必须了解特定的碳偏移标准,并与验证机构紧密合作,以导航参与碳交易系统的复杂过程。明确的指南和对实现碳偏移认证的支持可以促进更广泛地参与碳交易计划。强调碳信用额的收益货币价值对广告系统的货币价值可以推动支持可持续能源使用和供应的政策决策。
摘要:激光定向能量沉积 (L-DED) 是一种值得注意的增材制造方法,其中金属粉末通过喷嘴喷涂,然后使用激光逐层压实。与其他增材制造工艺不同,DED 对制造部件尺寸的限制较少,这使其有利于生产大型部件。然而,在增材制造中使用 DED 需要仔细优化各种工艺参数,包括激光功率、送粉速率、喷嘴扫描速度和沉积路径,因为这些参数会显著影响制造部件的几何形状和性能。最近的研究已经广泛调查了在不同能量密度下通过 DED 制造的部件的微观结构和性能,但对与送粉相关的变量的研究仍然缺乏。在本研究中,以粉末线密度 (PLD) 为参数,观察到在使用 STS316L 进行 DED 增材制造时,焊珠几何形状、微观结构和力学性能的变化以及送粉密度的变化。通过粉末进料速率和扫描速度控制,利用粉末线密度对 STS316L 合金粉末进行 1 线沉积,从而能够在沉积过程中观察焊珠的几何形状和熔池形状。此外,通过控制粉末线密度的 DED 制造方形样品,以观察由此产生的微观结构和机械性能。观察到,即使在相同的能量密度下,样品也会根据粉末线密度表现出不同的晶粒形貌、微观结构和机械性能,各向异性的变化尤其显著。这凸显了粉末进料密度作为与能量密度一起优化 DED 增材制造工艺的关键变量的重要性。本研究的结果有望通过调节粉末进料密度来帮助控制金属增材制造工艺中制造部件的各向异性和强度。
6儿童和青少年精神病学和心理治疗系,中央研究所17心理健康研究所,医学院曼海姆,海德堡大学,德国曼尼海姆市海德堡大学186儿童和青少年精神病学和心理治疗系,中央研究所17心理健康研究所,医学院曼海姆,海德堡大学,德国曼尼海姆市海德堡大学18
简介:深入描述行星风化层对于推进行星科学研究、空间工程和未来表面任务的成功至关重要 [1]。了解原位风化层的环境和地质力学特性,包括其强度、变形行为和水/冰含量,对于验证探测车操作、了解地质历史和确定资源可用性至关重要。为此,土壤特性评估阻力和热分析 (SPARTA) 工具包 [1] 已被开发为一套多功能、低质量、低功耗的传感器套件,它将以前所未有的空间分辨率表征月球和行星风化层的物理和化学特性 [1]。它是一个多功能系统,可以部署在自动或载人探测车和着陆器上,也可以作为宇航员在包括月球和火星 [1] 在内的不同行星表面探索过程中的手持工具使用。 SPARTA 由四个子系统组成,即锥体穿透测试仪 (CPT)、叶片剪切测试仪 (VST)、热导率探针 (TCP) 和介电光谱探针 (DSP),旨在提供详细的地下分析,以确定月球风化层的物理特性并确定冰的浓度和空间分布。SPARTA CPT 能够表征地下地层和月球风化层的承载强度。在这里,我们旨在使用 SPARTA CPT 进行测量,以建立锥体穿透阻力与穿透材料密度之间的定量关系 [2]。
日期:2025年1月2日主题:对密度奖金计划的全面分析本文档提供了有关Clarion Associates and Economic&Plance Systems(EPS)对密度奖金计划的全面分析的一部分完成的工作的信息。2023年6月5日,工作人员向市长和市议会提供了有关土地开发法规(LDC)修正案的备忘录,这表明市政府工作人员正在对响应多个理事会发起的决议进行全面分析密度奖金。2023年11月14日,住房部工作人员向住房和规划委员会提出了从现有密度奖金计划清单的发现。随后,住房和规划部门已经完成了单独的部门的过渡,规划部门已聘请工作人员来努力。在2024年3月7日,市议会会议上,市议会批准了与科罗拉多州D/B/A Clarion Associates的Clarion Associates计划和咨询服务的合同。CLARION及其亚宗教经济与规划系统(EPS)提供了计划和经济分析,以支持对密度奖金计划的全面分析。顾问完成密度奖金计划的全面分析(附件A)的最终报告包括以下信息:
Claudiu Bucur博士首席执行官David Jacobs CFO Piersica,Inc。进行访谈:Lynn Fosse,高级编辑CEOCFO杂志CEOCFO:Bucur博士,Bucur博士,Piersica背后的想法是什么?Bucur博士:Piersica的想法是开发一种电池,该电池产生的电池是商用锂离子电池中可用的能量密度的两倍以上。我们提供的产品与商业电池相比,电池中存储的能量要高得多。ceocfo:您弄清楚其他人没有的是什么?Bucur博士:首先,很难将锂离子电池的能量密度加倍。我们已经进入了锂离子电池的商业化30多年,从1990年到2024年,没有人能够使能量密度增加一倍。我们想做的是当今水平的能量密度的两倍以上,因此这将是巨大的增长。我们发现的是,大多数竞争对手都试图在利用现有商业材料的同时提高能量密度。他们从工程步骤开始,而不是从材料开发步骤开始。但是,主要问题是这些现有材料施加的限制非常具有挑战性,主要的材料是这些材料非常重。使用现有材料,制造轻电池很难,即使不是不可能的,这就是高能的含义,即轻电池。piersica通过开发一种新的,高度导电和极轻的材料来构成我们下一代电池的关键组成部分来做到这一点。ceocfo:为什么/您是如何开始研究这种方法的?这是第一步。Bucur博士:在开始Piersica之前,我在电池行业工作了15年,包括在美国和亚洲。 我遇到了该行业目前面临的许多相同问题。 最终,我得出的结论是,为了克服这些挑战,需要一个新的观点。 我离开了OEM并成立了Piersica,以开发一些我认为可以解决能源密度问题的技术方面,并且将是新的,不同的,而且非常有价值。 ceocfo:您今天在哪里? Bucur博士:我们开发了一种非常轻巧的新专有材料。 这种较轻的材料使我们能够制造更轻的电池,从而实现更高的能量。 您可以为存储更多的能量Bucur博士:在开始Piersica之前,我在电池行业工作了15年,包括在美国和亚洲。我遇到了该行业目前面临的许多相同问题。最终,我得出的结论是,为了克服这些挑战,需要一个新的观点。我离开了OEM并成立了Piersica,以开发一些我认为可以解决能源密度问题的技术方面,并且将是新的,不同的,而且非常有价值。ceocfo:您今天在哪里?Bucur博士:我们开发了一种非常轻巧的新专有材料。这种较轻的材料使我们能够制造更轻的电池,从而实现更高的能量。您可以为
RNA分子在广泛的生物过程中起着至关重要的作用。 对其功能有更深入的了解可以显着提高我们对生活机制的了解,并推动各种疾病的药物发展。 最近,RNA基础模型的进步使RNA工程的新方法实现了新的方法,但是现有方法在生成具有特定功能的新序列方面缺乏。 在这里,我们引入了rnagenesis,这是一个基础模型,通过潜在扩散结合了RNA序列理解和从头设计。 带有带有混合N-Gram tokenization的Bert样变压器编码器,用于编码,用于潜在空间压缩的查询变压器以及用于序列生成的自动回归解码器,rnagenesis从学习的表示中重建了RNA序列。 专门针对这一生成,训练了基于得分的脱氧扩散模型,以捕获RNA序列的潜在分布。 rnagenesis在RNA序列理解中的表现优于当前方法,在13个基准中(尤其是在RNA结构预测中)中获得了最佳结果,并且在设计具有理想特性的天然样品和CRISPR SGRNA方面进一步优先。 我们的工作将rnagenesis确立为基于RNA的治疗和生物技术的强大工具。RNA分子在广泛的生物过程中起着至关重要的作用。对其功能有更深入的了解可以显着提高我们对生活机制的了解,并推动各种疾病的药物发展。最近,RNA基础模型的进步使RNA工程的新方法实现了新的方法,但是现有方法在生成具有特定功能的新序列方面缺乏。在这里,我们引入了rnagenesis,这是一个基础模型,通过潜在扩散结合了RNA序列理解和从头设计。带有带有混合N-Gram tokenization的Bert样变压器编码器,用于编码,用于潜在空间压缩的查询变压器以及用于序列生成的自动回归解码器,rnagenesis从学习的表示中重建了RNA序列。专门针对这一生成,训练了基于得分的脱氧扩散模型,以捕获RNA序列的潜在分布。rnagenesis在RNA序列理解中的表现优于当前方法,在13个基准中(尤其是在RNA结构预测中)中获得了最佳结果,并且在设计具有理想特性的天然样品和CRISPR SGRNA方面进一步优先。我们的工作将rnagenesis确立为基于RNA的治疗和生物技术的强大工具。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是此预印本版本的版权持有人,该版本发布于12月29日,2024年。 https://doi.org/10.1101/2024.03.19.585778 doi:Biorxiv Preprint