摘要 - 在许多机器人应用中重建三维(3D)场景至关重要。机器人需要识别哪些对象及其位置和形状,以通过给定的任务精确地操纵它们。移动机器人,尤其是通常使用轻质网络在RGB图像上细分对象,然后通过深度图进行定位;但是,他们经常会遇到掩盖物体过度掩盖的分布场景。在本文中,我们通过使用非参数统计方法来完善分割错误来解决3D场景重建中的跨分割质量的问题。为了提高掩模的精度,我们将预测的遮罩映射到深度框架中,以通过内核密度估算它们的分布。然后,对异常值进行深度感知的拒绝,而无需以自适应方式进行额外的pa-rameters,以使其分布外情景,然后使用投影签名的距离函数(SDFS)进行3D重建。我们在合成数据集上验证了我们的方法,该方法显示了全景映射的定量和定性结果的改进。通过现实世界测试,结果还显示了我们方法在实体机器人系统上部署的能力。我们的源代码可在以下网址提供:https://github.com/mkhangg/refined Panoptic映射。
摘要 - 在许多机器人应用中重建三维(3D)场景至关重要。机器人需要识别哪些对象及其位置和形状,以通过给定的任务精确地操纵它们。移动机器人,尤其是通常使用轻质网络在RGB图像上细分对象,然后通过深度图进行定位;但是,他们经常会遇到掩盖物体过度掩盖的分布场景。在本文中,我们通过使用非参数统计方法来完善分割错误来解决3D场景重建中的跨分割质量的问题。为了提高掩模的精度,我们将预测的遮罩映射到深度框架中,以通过内核密度估算它们的分布。然后,对异常值进行深度感知的拒绝,而无需以自适应方式进行额外的pa-rameters,以使其分布外情景,然后使用投影签名的距离函数(SDFS)进行3D重建。我们在合成数据集上验证了我们的方法,该方法显示了全景映射的定量和定性结果的改进。通过现实世界测试,结果还显示了我们方法在实体机器人系统上部署的能力。我们的源代码可在以下网址提供:https://github.com/mkhangg/refined Panoptic映射。
在这项工作中,我们对香草生成对抗网络(GAN)的非反应性特性进行了详尽的研究。与先前已知的结果相比,我们证明了基础密度P ∗与GAN估计值之间的Jensen-Shannon(JS)差异的甲骨文不平等。我们界限的优势在应用于非参数密度估计的应用中变得明确。我们表明,GAN估计值和P ∗之间的JS差异与(log n/ n)2β/(2β + d)的速度快速衰减,其中n是样本大小,β决定了p ∗的平滑度。这种收敛速率与最佳的密度相吻合(至对数因素)与最佳的密度相一致。关键字:生成模型,甲骨文不平等,詹森 - 香农风险,最小值率,非参数密度估计。
由于Feynman [1]和Lloyd [2]的第一个开创性作品,量子计算被认为是探索与经典计算工具相关的强大相关多体系统的量子动力学的可能途径。哈密顿模拟算法的最新进展[3-6]允许对像计算不平衡外的dynamics [7]一样多样化的计算成本,独特的散射跨点[8,9]和基态能量估计[10]。大多数提出的算法仍然需要许多门太大,无法在NISQ设备上进行应用[11],并且需要更多的工作才能降低这些成本(例如,请参阅Eg。[9]最近分析了中微子核散射的要求)。在Somma [12]的最新工作中,我们在这项工作中提出了一种新的量子算法,具有几乎最佳的计算成本(就甲骨文调用而言),以研究光谱密度估计问题。尤其是给定栖息地操作员ˆ O,这项工作的目的是获得有效的算法,以近似频谱密度操作员ˆρ(ω)=δ(ω -− ˆ o),并使用DIRAC DIRAC DELTA函数。使用操作员的特征态ˆ o我们具有以下频谱表示
用于描述分布,而概率质量函数(PMF)用于离散数据。当综合数据时,可以通过从现有数据的分布中进行采样来生成新的数据点。插值和外推。插值和诱惑涉及在现有数据点之间或之外生成新的数据点。这对于时间序列,地理数据等特别有用。一种常见的插值方法是线性插值,其中新点的值取决于两个已知点之间的线性关系。蒙特卡洛模拟。蒙特卡洛模拟启用随机抽样,以模拟真实系统中的不确定性。在数据综合中,该方法用于通过随机从已知的分布中进行随机采样来生成新样本。它在财务,工程和物理建模中找到了常见的应用。基于模型的采样。此方法涉及利用现有数据的统计模型来预测新的数据点。例如,可以将线性回归模型拟合到存在数据,并且可以通过随机采样模型参数来生成新的数据点。这种方法对于表现线性关系的数据特别有效。内核密度估计。 内核密度估计插入每个数据点周围放置核(通常是高斯内核)并计算每个点的贡献以估计概率密度函数。 这对于捕获数据分布的复杂性和多模式很有用。内核密度估计。内核密度估计插入每个数据点周围放置核(通常是高斯内核)并计算每个点的贡献以估计概率密度函数。这对于捕获数据分布的复杂性和多模式很有用。生成新样本时,可以根据估计的概率密度函数进行随机采样。
图4:超级金属和金属3D的疯狂分布跨各种概率截止。内核密度估计用于说明分布,突出显示中位数(白色圆圈),四分位数(黑匣子)和数据扩展(晶须量最高为1.5倍。
为了证明我们方法的效果,我们就各种优化问题进行了多个NU Merical实验。对于每个问题,提供了一组来自未知可行集合的可行决策,我们生成了一个不可行的决定的人工数据集,这些决策在于使用我们的MCMC算法的已知多面体放松的组成。然后,我们训练分类器以学习可行数据集和不可行的数据集之间的分离边界。我们将我们的方法与几个未加剧的密度估计基线进行了比较,这些密度估计基线不会与补体中采样的数据相比。使用模拟的分数背包问题,我们表明我们的方法对于创建分类器至关重要,即(i)在需要可行和不可行区域之间的紧密分离边界时表现良好; (ii)当可行决策的数据集很小时。此外,我们考虑了所有Miplib [14]实例的线性性放松,少于80个变量,并证明我们基于抽样的分类器显着胜过所有基线模型。我们的实验代码可在https://github.com/rafidrm/mcmc-compomplement上找到。
热点地点选择对于暴力预防计划至关重要。根据一组标准选择地点可提高计划运作的效率和效果。4 传统上,犯罪分析部门会使用核密度估计来确定热点。犯罪分析师可以使用核密度估计来确定数据点(枪支犯罪)集群存在的位置。但是,很难确定这些集群是否具有统计意义。5 犯罪分析师知道我们想要确定具有统计意义的集群,因此使用了 ESRI 的优化热点工具。优化热点工具会考虑整个数据集中的一个特征(每个犯罪事件)。在我们的案例中,该工具在城市上方创建了一个 0.05 英里的网格,或大致与城市街区大小相同。每个枪支犯罪事件都会在每个网格区域中进行计数和汇总。如果其他网格以高值计数围绕它们,则具有高值计数的网格被认为具有统计意义。
这项工作涉及解决高维fokker-planck方程的新观点,即可以根据其相关粒子动力学采样的轨迹将求解PDE求解为密度估计任务的独立实例。使用这种方法,一个回避误差积累是由于在参数化函数类上集成了PDE动力学而产生的。这种方法显着简单地简化了部署,因为人们没有基于不同方程的损失条款的挑战。特别是我们引入了一类新的高维函数,称为功能层次张量(FHT)。FHT ANSATZ利用了层次的低级别结构,从而相对于维度计数,具有线性可扩展的运行时和内存复杂性的优势。我们引入了一种基于草图的技术,该技术对与方程相关的粒子动力学模拟的粒子进行密度估计,从而根据我们的ANSATZ获得了Fokker-Planck解决方案的表示。我们将提出的方法成功地应用于具有数百个变量的三个具有挑战性的时间依赖的Ginzburg-Landau模型。