首字母缩略词和缩写列表 BF 高炉 BOF 碱性氧气转炉 BTU 英热单位 CCUS 碳捕获、利用和储存 CE 公元 CO 2 二氧化碳 DRI 直接还原铁 EAF 电弧炉 EC 电力使用 ED 电力需求 EIA 美国能源信息署 EPA 美国环境保护署 FReSMe 从钢铁残余气体到甲醇 GHG 温室气体 GHGRP 温室气体报告计划 H 2 DRI 氢气直接还原 HBI 热压铁块 HYBRIT 氢气突破炼铁技术 IAC 工业评估中心 KDE 核密度估计 MECS 制造业能耗调查 MMBtu 百万英热单位 NAICS 北美行业分类系统 NP 非确定性多项式时间 PAUP 使用 Paup 进行系统发育分析 SIC 标准行业分类 SIDERWIN 通过电解法开发工业无 CO 2 钢铁生产新方法
本文结构如下。我们的主要技术结果是定理 2.18,它表明与推论 1.5 中的格 L 类似的格 L 具有高概率的短向量基。使用简单的数几何(参见第 2.5 节),我们将这个问题简化为估计半径不断增长的球中的格点数。不幸的是,我们无法直接获得合适的 L 格点数。我们通过从论证一开始就考虑不同的格 LM 来解决这个问题(使用第 2.2 节中的引理)。在第 2.3 节中,我们根据模 N 的狄利克雷特征展开 LM 的格点数。这会产生一个可以精确估计的主项和一个误差项。证明的核心在于使用模 N 的狄利克雷特征的零密度估计来无条件地限制这个误差项。最后,我们在第 3 节中证明了我们的量子算法应用(定理 1.1 和 1.2)。
我们提供的软件SBIAX旨在使用机器学习和物理研究人员使用密度估计SBI技术来运行贝叶斯推断。这些模型可以轻松地适合代码中的多加速器培训和推断。该软件 - 用JAX编写(Bradbury等,2018) - 允许将最先进的生成模型整合到SBI上,包括连续正常化的流量(Grathwohl等,2018),匹配流量(Lipman等人,2023年,2023年),掩盖了自动化的自动化型(papamakarian et aul ther and all。在代码中实现。该代码具有与Optuna(Akiba等,2019)的集成(Akiba et al。,2019年)的超参数优化框架,该框架将用于确保一致的分析,用于快速MCMC采样的BlackJax(Cabezas等,2024)用于Neural网络方法,用于快速MCMC采样(Kidger&Garcia,2021)。SBIAX的设计允许训练和采样新的密度估计算法,只要它们符合SBIAX中所示的简单且典型的设计模式。
摘要:犯罪地图是识别犯罪模式的重要方法。犯罪地图被广泛用于可视化犯罪的空间分布和分配安全资源。合格的制图表示对于呈现犯罪分析结果至关重要,因此犯罪地图的编制和丰富需要严格遵守制图原则。本文介绍了一种综合且易于理解的制图方法和技术,用于土耳其特拉布宗的犯罪分析和犯罪地图绘制。在分析和制图过程之前,对 2011 年至 2015 年之间记录的犯罪数据进行了重新分类。在下一阶段,应用了错误数据的编辑、标准化和地理编码过程。使用核密度估计法分析和绘制了所有犯罪的空间分布。六边形网格制图技术和热点方法用于可视化空间数据和犯罪活动的时间趋势。使用这些技术绘制了入室盗窃和袭击罪(所有犯罪中最常见的犯罪)的空间和时间分布。地图还提供研究区域犯罪模式的详细信息,并帮助警察部门制定安全城市战略并减少犯罪活动。
分位数回归和条件密度估计可以揭示平均回归遗漏的结构,例如多模式和偏度。在本文中,我们引入了一个深度学习生成模型,以用于关节分位数估计,称为惩罚生成分位数回归(PGQR)。我们的方法同时生成了来自许多随机分位水平的样品,从而使我们能够在给定一组协变量的情况下推断响应变量的条件分布。我们的方法采取了一种新颖的可变性惩罚,以避免在深层生成模型中消失的可变性或记忆的问题。此外,我们引入了一个新的部分单调神经网络(PMNN),以避免穿越分位曲线的问题。PGQR的一个主要好处是,它可以使用单个优化来拟合,从而绕过需要在多个分位级别反复训练模型或使用计算上昂贵的交叉验证来调整罚款参数。我们通过广泛的模拟研究和对实际数据集的分析来说明PGQR的功效。实施我们方法的代码可在https://github.com/shijiew97/pgqr上获得。
摘要 — 本研究探讨了图神经网络 (GNN) 和超图在使用氟脱氧葡萄糖正电子发射断层扫描 (FDG-PET) 图像改善抑郁症诊断的潜力。我们使用核密度估计和动态时间规整从单个静态 FDG-PET 图像构建图形和超图表示。在本地精神病数据集上使用各种 GNN 分类器(包括图卷积网络 (GCN) 和图同构网络 (GIN))评估这些表示。我们的实验表明,与成对图相比,GNN(尤其是 GCN)在超图上的性能更优越。我们强调了基于超图的表示在捕捉与抑郁症相关的复杂模式方面的整体功效。此外,我们对超图表示的探索为提高诊断准确性提供了有希望的途径,特别是在捕捉复杂的大脑连接模式方面。这项研究为 GNN 有助于使用 FDG-PET 图像更好地诊断精神疾病提供了证据,为个性化治疗策略和跨不同临床环境的诊断进步提供了见解。索引词 — 抑郁症、FDG-PET、KDE、DTW、图、超图、图神经网络、GIN、GCN。
我们假设一种搜索场景,我们想要最小化目标函数 f : IR n → IR , x → f ( x )。1 关于 f 唯一可获取的信息是已评估搜索点的函数值。我们的性能衡量标准是达到某个函数值所需的函数评估次数。许多连续域进化算法使用正态分布来采样新的搜索点。在本章中,我们重点介绍具有多元正态搜索分布的算法,其中分布的协方差矩阵不限于先验,例如不是对角矩阵。属于此类的分布估计算法(EDA)包括多元正态估计算法(EMNA)、高斯网络估计算法(EGNA)[15,16]和迭代密度估计进化算法(ID EA)[4]。属于此类的进化策略 (ES) 包括具有相关突变自适应功能的 (µ/µ I, λ ) -ES2[19] 和具有协方差矩阵自适应 (CMA) 的 ES[10]。最初,CMA 被解释为去随机化的自适应 [12]:与最初的自适应相比,在 CMA 中,分布参数的变化遵循其自身的随机性,而分布参数的变化则确定性地与对象参数的变化相关。在本章中,我们将从不同的角度回顾 CMA,揭示其与 EMNA 等 EDA 的密切关系。
虽然可再生能源系统和模型预测控制 (MPC) 的实施可以减少不可再生能源的消耗,但使用 MPC 进行建筑气候控制的一个挑战是天气预报的不确定性。在这项工作中,我们提出了一个数据驱动的稳健模型预测控制 (DDRMPC) 框架,以解决天气预报不确定的情况下使用可再生混合能源系统进行建筑气候控制的问题。控制和能源系统配置包括供暖、通风、空调、地热热泵、光伏板和电力储存电池。从气象站收集历史天气预报和测量数据,以识别预测误差并用于不确定性集构建。数据驱动的不确定性集是使用多种机器学习技术构建的,包括带核密度估计 (KDE) 的主成分分析 (PCA)、结合 PCA 和 KDE 的 K 均值聚类以及狄利克雷过程混合模型 (DPMM)。最后,开发了一个数据驱动的稳健优化问题,以获得具有可再生能源系统的建筑物的最佳控制输入。使用康奈尔大学校园内控制带有可再生能源系统的建筑物的案例研究来展示所提出的 DDRMPC 框架的优势。
尽管现有的fMRI到图像重建方法可以预测高质量的图像,但它们并未明确考虑训练和测试数据之间的语义差距,从而导致具有不稳定和不确定语义的重建。本文通过明确减轻语义差距来解决广义fMRI到图像重建的问题。具体来说,我们利用预先训练的剪辑模型将训练数据映射到紧凑的特征表示形式,该图表将训练数据的稀疏语义扩展到密集数据,从而避免了附近已知概念的实例(即训练超级杆)的语义差距。受FMRI数据中强大的低级表示的启发,这可以帮助减轻远离已知概念(即在培训超级阶级之外)的情况的语义差距,我们利用结构信息作为一般提示来指导图像重建。此外,我们基于概率密度估计来提出语义不确定性,并通过在扩散过程中自适应地整合e xpanded s emantics和s弹性信息(GESS),从而实现了g耗电fMRI到图像的重建。实验结果表明,所提出的GESS模型优于最先进的方法,我们提出了一种广义的场景拆分策略,以评估GESS在缩小语义差距方面的优势。我们的代码可在https://github.com/duolala1/gess上找到。
机器学习简介。必需图书馆和工具(Scipy,Numpy,Pandas,Graphviz,Seaborn,Matplotlib软件包)。学习类型 - 受监督和无监督的学习。问题类型 - 回归,分类和聚类;机器学习的应用。讨论关键概念,例如成本函数,优化 - 梯度下降算法。采样,决策界限,模型不合适和过度拟合以及偏见变化权衡,成本敏感模型,电感偏见。贝叶斯学习:概率的基础,贝叶斯规则,生成与判别模型,贝叶斯规则 - 参数估计,最大似然。监督学习:解决回归问题 - 线性回归,正则化 - 脊和拉索。解决分类问题 - 逻辑回归,SVM,决策树。合奏 - 决策森林,包装和增强。无监督的学习:聚类-DBSCAN和桦木。异常检测 - 密度估计。加强学习简介。通过主成分分析缩小维度,内核主成分分析。人工神经网络简介。模型验证和选择:准确性,置信区间,混淆矩阵,精度,召回和其他指标,超参数调整,交叉验证,引导程序和ROC曲线,R平方等等。模型部署 - 在基于云的服务器中部署机器学习模型。