摘要:电动和混合动力飞机推进系统正在迅速改变移动技术。航空旅行已成为减少温室气体排放的主要焦点。飞机部件的电气化可以带来多种好处,例如减轻重量、减少环境影响、降低燃料消耗、提高可靠性和加快故障解决速度。由于对高功率、高效和容错飞行部件的需求不断增加,推进、驱动和发电是电动飞机技术的三个重点关注领域。环保飞机系统的必要性促使航空航天工业使用电动驱动系统,而不是传统的机械、气动或液压系统。在此背景下,本文结合一些与工业相关的讨论,回顾了电动技术的当前现状和未来发展。在这项研究中,永磁电机被确定为飞机子系统最高效的机器。结果表明,其功率密度比开关磁阻电机和感应电机高 78% 和 60%。还分析了几种缩小现有和未来设计差距的开发方法,包括嵌入式冷却系统、高导热绝缘材料、薄规格高强度电工钢和集成电机驱动拓扑。
摘要:电动和混合动力飞机推进系统正在迅速改变移动技术。航空旅行已成为减少温室气体排放的主要焦点。飞机部件的电气化可以带来多种好处,例如减轻重量、减少环境影响、降低燃料消耗、提高可靠性和加快故障解决速度。由于对高功率、高效和容错飞行部件的需求不断增加,推进、驱动和发电是电动飞机技术的三个重点关注领域。环保飞机系统的必要性促使航空航天工业使用电动驱动系统,而不是传统的机械、气动或液压系统。在此背景下,本文结合一些与工业相关的讨论,回顾了电动技术的当前现状和未来发展。在这项研究中,永磁电机被确定为飞机子系统最高效的机器。结果表明,其功率密度比开关磁阻电机和感应电机高 78% 和 60%。还分析了几种缩小现有和未来设计差距的开发方法,包括嵌入式冷却系统、高导热绝缘材料、薄规格高强度电工钢和集成电机驱动拓扑。
摘要:电动和混合动力飞机推进系统正在迅速改变移动技术。航空旅行已成为减少温室气体排放的主要焦点。飞机部件的电气化可以带来多种好处,例如减轻重量、减少环境影响、降低燃料消耗、提高可靠性和加快故障解决速度。由于对高功率、高效和容错飞行部件的需求不断增加,推进、驱动和发电是电动飞机技术的三个重点关注领域。环保飞机系统的必要性促使航空航天工业使用电动驱动系统,而不是传统的机械、气动或液压系统。在此背景下,本文结合一些与工业相关的讨论,回顾了电动技术的当前现状和未来发展。在这项研究中,永磁电机被确定为飞机子系统最高效的机器。结果表明,其功率密度比开关磁阻电机和感应电机高 78% 和 60%。还分析了几种缩小现有和未来设计差距的开发方法,包括嵌入式冷却系统、高导热绝缘材料、薄规格高强度电工钢和集成电机驱动拓扑。
• 美国宇航局的《战略计划》(2022 年)概述了具体的技术开发活动,这些活动指导该机构“创新和推进变革性空间技术” • 对于空间运输领域,一个典型的高影响空间技术领域是使用低毒或“绿色”火箭推进剂,与传统的自燃推进剂相比,这些推进剂表现出良好的空间储存性、Isp 性能和地面处理能力 • 先进航天器高能无毒 (ASCENT 推进剂)(以前称为 AF-315E)的 Isp 密度比肼高 50%,并已在包括绿色推进灌注任务 (GPIM, 2019) 和月球手电筒 (2022) 在内的任务中得到验证 • 绿色推进双模式 (GPDM) 项目旨在利用 ASCENT 的离子液体特性,将其用作化学和电喷雾推进的双模式推进剂,在 6U 立方体卫星上使用通用推进剂罐/进料系统计划于 2025 年底发射的飞行演示 • GPDM 是一项由 MSFC 牵头、SST/STMD 资助的活动,NASA、大学和行业合作伙伴(由拨款和 SBIR/STTR 计划资助)共同开发飞行部件,并将支持特定的任务操作活动
摘要。现代热能存储 (TES) 系统依赖于寻找一种低成本的方法来改善传热。在本分析中,将同时添加 CuO 纳米颗粒和倾斜外壳与一种新方法进行了比较,该方法使用水作为补充流体,利用 PCM 和补充流体之间的密度差异来改善熔化过程。油酸被选为水中不混溶的 PCM,这会导致 PCM 和辅助流体在熔化过程结束时完全分离,从而可用于更多额外的 TES 循环。通过将水作为较重的材料直接放在油酸上方,熔化的油酸在外壳底部被水取代,因为水的密度比油酸大。首先,研究在具有不同倾斜度 0°、45° 和 90° 的外壳中添加 1% 和 2% 的 CuO 纳米颗粒以确定能量存储率。使用连续性、动量和能量方程来制定 TES 系统的数学模型。下一步,分析组合系统的熔化过程,以确定组合系统与倾斜外壳中包含 CuO 纳米颗粒的系统相比的能量存储率。将组合系统与倾斜外壳中纳米 PCM 的最佳情况进行比较,发现使用辅助流体的系统的能量存储率高出 1.396 倍。
目的:将多巴胺转运蛋白(DAT)的密度与帕金森氏病(PD)患者的L-DOPA诱导的运动障碍(LID)的其他危险因素进行比较。材料和方法:我们评估了67名受试者:44例特发性PD患者的严重程度不同(PD组)和23名健康年龄匹配的志愿者(对照组)。在PD组的44例患者中,有29例是男性,在基线时记录了以下均值:年龄为59±7岁;疾病持续时间为10±6年; Hoehn和Yahr(H&Y)阶段,2.16±0.65;统一的帕金森氏病评级量表III(UPDRS III)得分为29.74±17.79。所有受试者均接受了99m TC-TrodoDat-1 Spect。我们还计算了纹状体中的特定摄取比或结合电位。结果:PD组的同侧和对侧纹状体的DAT密度较低。变量疾病持续时间,L-DOPA剂量,每天剂量,L-DOPA效应持续时间,H&Y阶段和UPDRS III分数解释了盖子的发生。同侧纹状体,对侧纹状体和尾状核的DAT密度比没有乳头的患者低。结论:我们的发现表明,突触前多巴胺能神经治疗与PD个体的盖子有关。
我们研究了一种通过强烈的纯纯粹相互作用来产生超导性的机制,用于扁平分散ε〜k 4,而无需在费米 - 液体中使用配对不稳定性。所产生的超导体在电子的轨道运动中打破了时间反转和反射对称性,并表现出非平凡的拓扑顺序。我们的发现表明,这种拓扑性手性超电导率更可能在接近或完全自旋的谷化金属相和Wigner晶体相之间出现。这些拓扑性手性超导体可以完全或部分自旋谷化。对于部分自旋谷化极化,将与不同的自旋valley量子数相关的电子密度比定量为简单的有理数。此外,这些拓扑性手性超导体中的许多表现出电荷4或更高的凝结,具有分数统计的中性准颗粒和/或无间隙性手性边缘状态。两个拓扑性手性超导体与“自旋” - 三个或无自旋P + I P BCS超导体相同,而其他阶段则与任何BCS超导体不同。在存在周期性潜力的情况下,在分数异常量霍尔状态之间也会在分数异常霍尔状态之间产生任何机制。
裂变过程于1939年首次报道,并于1942年实现了世界上第一个人造的自我维持裂变反应。创建自我维持的裂变链反应在概念上非常简单。所需的一切都是要放置在正确的几何形状中的正确材料 - 无需极高的温度或压力 - 系统将运行。自1942年以来,裂变系统已被政府,工业和大学广泛使用。裂变系统独立于太阳接近或方向运行,因此非常适合深空或行星表面任务。此外,裂变系统的燃料(高度富集的铀)本质上是非放射性活性的,含有0.064 curiedkg。这与当前的空间核系统(放射性同位素系统中的PU-238包含17,000个Curiedkg)相比,并且某些高度未来派的推进系统(D-T融合系统中的Tritium将包含10个,OOO.W CURIEDKG)。zyxw的另一个比较是,在启动时,典型的空间裂变推进系统将比火星探索者的寄居者漫游者(Sojourner Rover)使用放射性病来进行热控制。裂变系统的主要安全问题是避免无意系统开始 - 通过适当的系统设计解决此问题非常简单。裂变的能量密度比最好的化学燃料大7个数量级,如果正确使用,则足以使能够快速,负担得起的访问太阳系中的任何点。
1。引言由于锂离子电池的能量密度比其他二级电池更高,因此可以使其更小,更轻。这使他们能够迅速传播为移动设备(例如笔记本电脑和蜂窝电话)的电源。对锂离子电池的需求不断地不断增长,近年来,使用二级电池的车辆电力已成为实现低碳社会的全球趋势。此外,由于使用有机溶剂作为电解质的常规液态细胞是可亮的,因此在日本和世界其他地区,正在积极追求使用固体电解质的安全,全稳态细胞的发展。在这种情况下,许多人期望锂离子电池的性能进一步改善,并更长的寿命和更好的安全性。X射线衍射(XRD)被认为是评估锂离子电池改善性能所需的有效分析技术之一。要检查合成电池材料的结晶和相位ID分析,经常使用容易用于研究的实验室尺度X射线衍射仪。另一方面,在充电和放电过程中,在高强度X射线可用的同步基因设备上经常进行Operando(或原位)测量正和负电极材料晶体结构的变化(1) - (3)。最近,由于X射线源,光学元素和检测器的性能提高,即使实验室尺度X射线衍射仪,Operando的测量也已成为可能。本文介绍了使用SmartLab表征锂离子电池材料的示例。
复合材料用于生产多目标结构,例如流体储层,变速箱管,热交换器,由于高强度和刚度与密度比和改善耐腐蚀性而导致的压力容器。数学概念可用于模拟和分析复合材料的生成的机械和热性能,以在实际工作条件下与所需的性能有关。为了解决复合材料中开发的非线性微分方程的精确解,可以应用分析方法。可以使用有限元方法(FEM)对复合复合结构的机械和热分析进行数值分析,以增加在不同工作条件下复合结构的性能。可以分析研究复合负载系统下的复合结构的性能,可以分析研究静态应力以及静态和动态载荷对复合结构设计形状的影响。可以通过使用FEM方法来计算复合载荷下复合材料的应力和变形,以便在复合结构的安全性增强方面使用。为了提高安全水平以及在不同工作条件下复合结构的性能,可以模拟和分析弹性复合材料中的裂纹开发。可以在不同的机械和热载荷条件下根据机械和热性能来开发和优化复合材料变化的过程,可以应用高级机器学习系统。在研究中提出了近期复合材料和结构的审查,还提出了未来的研究工作。因此,为了提高复杂加载系统下的复合材料和结构的性能,可以通过审查和评估已发表论文中的最新成就来提供复合设计和修改程序的先进方法。