多体系统(微观和宏观)中的统计涨落对物理学有着非常重要的作用,因为它们编码了关于可能的相变、耗散和聚集现象的关键信息[1-6]。涨落的一个尚未开发的新特征是,在量子效应变得重要的情况下,小系统的涨落会增加。我们在最近的两篇论文[7、8]中定量分析了这种影响,在这些论文中,我们讨论了玻色子和费米子热气体中能量密度的涨落。我们的结果表明,在描述重离子碰撞时,相对论流体动力学中使用的流体元素概念存在局限性。当子系统的尺寸降至约0.5 fm以下时,能量密度涨落(对于温度和粒子质量的典型值)变得如此之大,以至于它们与它们的平均值相当。在这种情况下,具有明确能量密度的流体单元的物理图像变得不合理。我们
我们基于从 Gutzwiller 平均场假设得出的作用的正则量化,开发了 Bose-Hubbard 模型的量子多体理论。我们的理论是对弱相互作用气体 Bogoliubov 理论的系统推广。该理论的控制参数定义为 Gutzwiller 平均场状态之上的零点涨落,在所有范围内都保持很小。该方法在整个相图中提供了准确的结果,从弱相互作用超流体到强相互作用超流体,再到 Mott 绝缘相。作为具体应用示例,我们研究了两点相关函数、超流体刚度、密度涨落,发现它们与可用的量子蒙特卡罗数据具有定量一致性。特别是,恢复了整数和非整数填充时超流体-绝缘体量子相变的两个不同普适性类。
从技术上讲,量子场论是量子力学在场的动态系统中的应用,与基本量子力学非常相似,它涉及粒子动态系统的量化。因此,虽然量子力学处理的是具有有限自由度的机械系统,但量子场论描述的是具有无限自由度的量子系统。具体来说,本课程致力于相对论量子场论。相对论量子场论解释了粒子的存在并描述了它们之间的相互作用。因此,自然界最基本的层面是由粒子组成的这一事实可以仅仅看作是相对论量子场论的结果。后者在现代物理学中的应用领域非常广泛:从研究高能加速器中基本粒子之间的碰撞到早期宇宙的宇宙学。例如,后来产生星系等结构的原始密度涨落、暗物质的起源或黑洞辐射都是由相对论量子场论描述的。然而,量子场论也可应用于非相对论系统,特别是凝聚态物理学:超流体、超导性、量子霍尔效应……