如果极端和不可预见的情况阻止您按时完成任务,请联系学生院长办公室,并为他们提供所有必要的详细信息和文档。与我们联系,并确认您已向学生院长办公室提供了所需的文件。院长的办公室有能力比我们更好地验证这些例外情况,并在整个课程中提供了有关紧急情况如何处理的统一性。学生院长办公室将与教练一起检查您的文档和后续行动。那时,讲师将能够采取适当的行动并跟进您。
密码学长期以来一直是确保通信和保护隐私的工具。但是,其作用超出了技术实施,以涵盖重要的政治和道德方面。由埃里克·休斯(Eric Hughes)于1993年撰写的Cypherpunk宣言[7],强调了加密和拥护者的继承性政治本质,以此作为确保隐私和个人自由的一种手段。同样,菲利普·罗加威(Phillip Rogaway)的[10]工作强调了密码学家的道德责任,尤其是在大规模监视和社会影响的背景下。从根本上讲,密码学可以看作是“武装”群众保护自己的群众的一种手段。1993年的宣言和罗加威的作品强调了两个要点:不信任政府和保护集体数据。这种观点在戴维·乔姆(David Chaum)的思想中得到了回应,他提出了一个依靠强大加密来保护隐私的交易模型。尽管这些想法首次阐明了40多年,但保护社会免受信息滥用的梦想仍然很遥远。Chaum警告:
如果未来的量子计算机能够破坏加密系统,那么国家和经济安全将受到重大影响。破解密码意味着对手可以进行大规模金融欺诈、中断关键基础设施服务并获取最机密和最敏感的国家机密。除了量子计算机对未来的影响之外,它还对当今的系统构成威胁。虽然量子计算机的科学成熟度尚未达到威胁密码学的程度,但对手有资源拦截和收集加密数据,一旦拥有量子计算机就可以解密。这对政府来说尤其重要,因为某些信息在未来几十年内仍是敏感信息。它的泄露可能会威胁国家机密和未来的作战能力。
摘要。本文旨在直接分析量子计算算法的能力,特别是 Shor 和 Grovers 算法,分析其时间复杂度和强力能力。Shor 算法使我们能够以比传统系统快得多的速度找出大素数的素因数。这对依赖于传统算法无法计算大素数素因数的经典密码系统构成了威胁。Grover 算法使我们的计算机系统搜索能力提高了一倍,这将对密码系统密钥和哈希的强力能力产生重大影响。我们还分析了这些算法对当今经典密码系统的影响,以及可以对安全算法进行的任何重大改进,以使其更安全。
为执行隐私权的政府失败,密码学可以用作个人的隐私技术,以从包括自己的政府在内的任何对手来执行对自己秘密的控制。这种事务状况,其中隐私受到私人(通常是公司行为者)和控制政府的威胁,可以被认为是资本主义中的一种突变(Zuboff,2018年)。我们想将这样的概念转到其头上。如密码学历史所示,保密是模范状态的信息组织的建立。这种反演使我们可以考虑政府保密的增加,对自己人口的大规模监视是一种历史的连续性,而不是对国家历史的畸变。它还使我们能够重新考虑密码学从国家到个人的传播,这是主权历史景观的转变,而不仅仅是针对某些关于隐私权和日益数字个人自我的法律障碍的防御态度。
J 10 2(10-2)mod 26 = 8 mod 26 = 8 8→H k 11 2(11-2)mod 26 = 9 mod 26 = 9 9→I n 14 2(14-2)mod 26 = 12 mod 26 = 12 mod 26 = 12 12→12 12→L G 7 2(7-2)mod 26 = 5 mod 26 = 5 mod 26 = 5 mod 26 = 5 5 5→E V 22 2(22-2-2)mod 26 = 20 20 20 20 20 20 20 20 20 20 20 2 26 = 20 20范= 21 21→U U 21 2(21-2)mod 26 = 19 mod 26 = 19 19→s o 15 2(15-2)mod 26 = 13 mod 26 = 13 mod 26 = 13 13→m g 7 2(7-2)mod 26 = 5 mod 26 = 5 mod 26 = 5 5→e g 7 2(7-2) mod 26 = 1 1→a V 22 2(22-2)mod 26 = 20 mod 26 = 20 20→t v 22 2(22-2)mod 26 = 20 mod 26 = 20 20→t y 25 2(25-2)mod 26 = 23 mod 26 = 23 23→w q 17 2(17-2)
2024 年 8 月,美国国家标准与技术研究所 (NIST) 迎来了关键时刻,发布了前三项最终确定的后量子密码 (PQC) 标准:FIPS 203、FIPS 204 和 FIPS 205。这些标准标志着密码学新时代的开始,旨在防范未来量子计算的威胁。在本次演讲中,NIST 密码技术组经理 Andrew Regenscheid 先生将详细介绍新制定的 FIPS PQC 标准。他还将讨论正在进行的标准化其他加密算法的努力,确保为当前标准中的潜在漏洞做好准备。网络安全工程师兼 NIST 国家网络安全卓越中心 (NCCoE) 项目负责人 Bill Newhouse 先生将解释过渡到这些新的抗量子加密标准的紧迫性。他还将分享实用策略和最佳实践,以促进从现有公钥加密系统向这些下一代标准的迁移。
摘要本章重点介绍了ASCON加密算法,该算法是一种轻巧的加密协议,专门设计用于适合具有限制资源的环境,例如物联网设备和嵌入式系统。该分析是在Ascon-128,Ascon-128a和Ascon-80PQ变体上进行的,突出了它们对不同安全和运营必需品的适当性。在各种数据尺寸(1KB,10KB,100KB和1000KB)上测量了诸如加密和解密时间,记忆消耗和吞吐量之类的主要性能指标。通过此分析,很明显,无论数据大小如何,Ascon在加密和解密中都非常稳定,有效地表现,因此,在一致的处理时间是一个重要考虑因素的系统中,可以轻松地依靠它。研究还发现,解密过程中的记忆使用量始终高于加密过程中的记忆使用情况。对于记忆敏感的应用,需要考虑此因素。至于吞吐量,该算法在解密较小的文件和较大文件的加密方面表现出了更好的结果。得出结论,Ascon算法轻巧且非常有效,这使其成为受约束环境的合适选择。关键字:时代,密码学,算法。
