除了大规模解锁医学研究以定义和优化公共卫生保健政策,这在孤岛世界中是不可能的,Hubaux认为SF-GWAS将具有宝贵的副作用。目前,数据集实际上是在全球分布的,坐在这里和那里的硬盘和磁带上,因为传统上传输数据非常复杂。医疗数据的记录在不同地方的应用也有所不同。Hubaux称此“史前”称为“史前”,并说,因此数据集的充分利用不足。
摘要。嵌入式设备上的每个加密实现都容易受到侧向通道攻击的影响。为了防止这些攻击,主要的对策包括将每个敏感变量分开并独立处理。随着旨在抵抗量子计算机及其操作复杂性的新算法的即将到来,此保护代表了一个真正的挑战。在本文中,我们提出了对保护自行车加密系统解码器免受一阶攻击的早期尝试的攻击。此外,我们还引入了一个新的程序,用于对解码器的高阶掩盖,并最新进行了最新的改进。我们还提出了整个密码系统的第一个完全掩盖的实现,包括关键生成和封装。最终,为了评估对策的正确性并启动进一步的比较,我们在C中实施了对策,并提供了其性能的基准。
量子计算的不断增长对传统加密系统构成了严重的挑战。量子计算产生的主要风险之一是它通过利用Shor's算法等技术来克服经典的公共密钥加密的潜力。这些由椭圆曲线离散对数问题(EC-DLP),离散对数问题(DLP)和整数分解(如果)问题组成。经典的加密技术(例如RSA,Diffie-Hellman和Elliptic Curve Cryptography(ECC))基于这些问题。这些加密协议一旦足够强大,就可以通过量子计算机破坏,从而使其无用并危害当代通信系统的安全性。这种新兴风险强调了迫切需要开发可以抵抗量子攻击的加密解决方案。
T. P. Raju 1,Atul Halmare 2,Yash Yangantiwar 3,Vishal Pavnikar 4计算机应用中的大师,Tulsiramji Gaikwad Patil工程技术学院,Nagpur摘要:人工智能(AI)已成为各个领域的变革力量,以跨各种领域的变革力量,驾驶技术侵害,驾驶技术侵害,陆地景观范围。本文介绍了对AI的多方面方面的全面探索,其中包括其基本概念,多样化的应用和批判性的伦理考虑因素。本文首先阐明了人工智能的基本原理,涵盖机器学习,神经网络和自然语言处理,从而为读者提供了对推动AI能力的基本机制的清晰了解。随后,该文章深入研究了AI的广泛应用,跨越了医疗保健,金融,教育,运输等行业。在每个领域中,AI的潜力增加了决策,优化流程和促进创新,从而提供了对这项技术在不同部门的变革潜力的见解。此外,这篇文章解决了AI在社会中的普遍融合所产生的越来越重要的道德意义。它严格研究了AI系统可以表现出来的偏见,公平,透明度和问责制的问题,从而影响个人和社区。还评估了AI对隐私,数据保护和人类自主权的潜在后果,促使人们讨论了道德框架管理AI发展和部署的必要性。这篇文章通过承认AI在增强人类生活的巨大潜力的同时承认需要负责任的发展和道德考虑的需求来采用平衡的方法。总结了政府,行业,学术界和民间社会的合作努力,以应对道德挑战,确保负责使用AI,并促进未来的未来,而AI驱动的创新使人类权力促进人类为集体利益。关键字:人工智能,概念,应用,道德,进化,偏见,问责制,社会经济含义,变革性潜力
Cyclonic Ross Gyre(RG)占据了南大洋的西南太平洋地区(图1A)。水文数据(Gouretski,1999),卫星高度测定(Dotto等,2018)和建模(Rickard等,2010)的证据表明,RG在海面以下3,000 m以上,延伸了约20 sv,运输于约20 sv,占据了约20 sv的运输,占主导地位的大型热热结构。水平RG范围受到南部的大陆架断裂和北部和西部的太平洋 - 北极山脊(PAR)的限制(图1A)。RG的向南流动的东部肢体受地形的强烈约束(Patmore等,2019),其位置更可变(Dotto等,2018; Sokolov&Rintoul,2009)。东部RG肢体和邻近的南极圆极电流(ACC),向Amundsen Sea(AS)架子供应温暖的圆形深水(CDW)(Jenkins等,2016; Nakayama等,2018),在到达冰架腔时,它可以快速融化。这种海洋驱动熔化的增加会导致附近的Amundsen-Bellingshausen海洋中的冰盖变薄(Depoorter等,2013; Jenkins等,2016)。
•名称:Hadamard,Pauli-X,Pauli-Y,Paper Shift,Toffoli,Fredkin,Ising等。
教学语言LV的语言,注释研究课程介绍了各种量子密钥分布(QKD)协议和技术,信息后处理,例如错误纠正代码,QKD协议的安全性分析以及实用的QKD实现方面。量子加密或量子密钥传输解决了通信系统的基本挑战之一,以确保用户身份验证和安全数据传输。量子理论得出的原则具有在两个用户之间创建秘密加密密钥的潜在应用。因此,量子通信系统的安全是基于物理定律。正在进行用于系统安全证明和创新量子通信协议的复杂技术的快速开发,并且正在越来越存在此类技术原型的实际应用示例。研究课程包括诸如量子信息处理,量子计算,量子通信和量子密码学之类的主题。就能力和技能而言的课程目标和目标
摘要:RSA是最广泛采用的公钥加密算法之一,它通过利用模块化指数和大质量分解的数学属性来确保安全通信。但是,其计算复杂性和高资源要求对实时和高速应用构成重大挑战。本文通过提出针对RSA加密和解密的优化非常大规模的集成(VLSI)设计来解决这些挑战,重点是加速模块化凸起过程,这是RSA计算的核心。设计结合了蒙哥马利模块化乘法,以消除时间密集型的分裂操作,从而在模块化算术域中有效地计算。它进一步整合了诸如管道,并行处理和随身携带加盖之类的技术,以减少关键路径延迟并增强吞吐量。模块化启动是使用正方形和多种方法的可扩展迭代方法实现的,该方法针对硬件效率进行了优化。硬件原型是使用FPGA和ASIC平台合成和测试的,在速度,区域和功耗方面表现出卓越的性能。所提出的体系结构在保持安全性和可扩展性的同时,可以实现高速操作,使其适用于实时的加密应用程序,例如安全通信,数字签名和身份验证系统。与现有实现的比较分析突出了重大改进,将提出的设计作为下一代安全硬件加速器的可行解决方案。关键字:RSA算法,Verilog,FPGA