抽象背景:黑色素瘤是皮肤癌最具侵略性的形式。黑色素瘤干细胞(MSC)是黑色素瘤侵袭和转移的驱动力之一。因此,探索维持MSC茎的机制非常重要。在这项研究中,表征了从A375细胞系衍生的CD147阳性(CD147+)MSC。方法:从A375细胞中对侧种群(SP)和非SP细胞进行分选。进行了定量的实时聚合酶链反应和蛋白质印迹分析,以确定SP和非SP细胞中CD147的表达。随后,从SP细胞中分离出CD147+和CD147阴性(CD147-)细胞。通过球体形成,伤口 - 修复和Transwell分析,可以鉴定出CD147 +/-抗原呈现细胞的干细胞特征和转移潜力。Western印迹分析,以评估反式形成生长因子-BETA1(TGFβ1)和神经源性基因座缺口同源蛋白1(Notch1)信号通路的蛋白质水平。异种移植肿瘤实验,以研究体内CD147+细胞的肿瘤基因能力。结果:CD147在A375细胞系的SP细胞中高度表达。CD147+细胞在体外具有更强的球体形成,迁移和侵袭的能力。CD147+细胞中TGFβ1,Notch1,Jagged1和Hes1的蛋白质水平高于CD147-细胞。此外,CD147+细胞在体内显示出更强的致瘤和转移性潜力。©2024密码子出版物。由密码子出版。结论:A375细胞系的SP细胞表达了高水平的CD147,而CD147+ SP细胞POS具有更强的茎样特征和运动性,这与TGFβ和Notch途径的激活有关。
密码子的优化已进化为通过利用遗传密码的冗余,从而增强蛋白质表达效率,从而为单个氨基酸提供多个密码子选项。最初在大肠杆菌中观察到的最佳密码子使用与高基因表达相关,这推动了从基础研究扩展到生物药物和疫苗开发的应用。该方法对于调节基因疗法的免疫反应特别有价值,并且具有创建组织特异性疗法的能力。然而,挑战仍然存在,例如对蛋白质功能产生意外影响的风险以及评估优化有效性的复杂性。尽管存在这些问题,但密码子优化对于推进基因疗法至关重要。这项研究在基因疗法的背景下对当前的密码子优化指标进行了全面综述及其在研究和临床应用中的实际用途。
此预印本的版权所有者此版本于 2022 年 9 月 20 日发布。;https://doi.org/10.1101/2022.09.20.508560 doi:bioRxiv preprint
摘要背景:综合征免疫缺陷是一种遗传学和病理生理的先天性免疫误差。这些特征是多种额外的免疫临床症状和广泛的免疫表型,对感染的易感性增加,自身免疫现象,免疫失调,器官特异性病理和恶性肿瘤。目的:提高儿科医生对这一多方面的儿童原发性免疫缺陷的认识。方法:对同步免疫缺陷的遗传背景和临床症状以及当前的诊断方法和治疗方式的全面回顾。结果:从儿科医生的角度来看,这是对综合症免疫的早期诊断,这对于成功挽救生命的免疫校正通常是必不可少的,这是诊断性的挑战。提高了儿科医生认识到受影响儿童中这些疾病的体征和症状的意识至关重要。当前的分子生物技术和免疫遗传学的进展,导致实施新生儿筛查和新一代测序,为确定性诊断提供了信息的工具,并且在许多新疾病实体中,其定义和基因型 - 基因型 - 表型 - 透明型和相关性。结论:综合症原发性免疫缺陷儿童中的广泛临床表型需要儿科医生的特别注意,即在临床免疫学家的监督下,个性化的多叶度三级方法。©2021密码子出版物。由密码子出版。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2021年2月20日发布。 https://doi.org/10.1101/2021.02.19.431999 doi:Biorxiv Preprint
该密码的核心仅使用 4 个字母(G、C、A、T),每个字母代表一种称为核苷酸碱基的东西。这些碱基成对工作,连接双螺旋的两个半部分,G 与 C,A 与 T。每个碱基只能与特定的伙伴配对!一组三个这样的字母称为密码子。密码子是一种代码,它告诉我们的身体构建一种称为氨基酸的特定分子。然后,这些分子按照 DNA 指示的顺序连接在一起,形成称为蛋白质的长链。我们的身体由蛋白质组成,例如我们的肌肉、皮肤,甚至唾液!可以将其视为形成链接(氨基酸)的指令(密码子),该链接可用于创建链(蛋白质)!
社会昆虫在性别和种姓之间表现出极端的表型差异,即使潜在的基因组几乎相同。表观遗传过程已被提出是介导这些表型差异的可能机制。使用皇后区,男性和生殖女性工人的整个基因组纤维纤维测序,我们表征了大黄蜂炸弹式地面的性别和种姓特异性甲基。我们已经确定了可能影响性别和种姓表型差异的组蛋白修饰过程中DNA甲基化的潜在作用。我们还发现差异化甲基化基因通常显示出低水平的DNA甲基化,这可能暗示了介导转录可塑性中低甲基化基因的单独功能,这与通常参与家政功能的高度甲基化基因不同。我们还使用了同一皇后和男性的整个基因组重新测序,研究了潜在的基因组与甲基化合体之间的关系。我们发现DNA甲基化富含零折的位点。我们建议DNA甲基化可能在这些位点起到靶向诱变作用,从而通过非同义基因组中的非同义变化提供了底物。但是,我们在样品中没有看到DNA甲基化与阳性选择速率之间的任何关系。为了充分评估自适应过程中DNA甲基化的可能作用,需要使用自然人群数据进行特定设计的研究。
核糖体将核酸中编码的遗传信息转化为蛋白质。即使将氨基酸逐一组装在一起,这种解码过程也需要mRNA上的三核苷酸密码子与同源氨基酰基-TRNA的相应反密码子之间的watson-Crick相互作用。遗传密码是退化的,由于序列柔韧性主要在第三核苷酸的水平上,因此由一个或多个TRNA识别。1,2另一方面,核酸的合成是由聚合酶介导的,并通过在生长链上组装单个单字母核苷酸来进行进行。由于机制的差异,这些基本生物聚合物的合成涉及的错误率大大差异从非常低的DNA复制到更容易出错的DNA转录到mRNA中,以及将mRNA转换为蛋白质的较小的忠诚度(分别为〜10 -8,〜10 -5,〜10 -5,〜10 -5,〜10 -10 -4,误差率将mRNA转换为蛋白质。3,4