以下 ITU-T 建议书和其他参考文献包含的条款通过本文引用而构成本建议书的条款。出版时,所示版本有效。所有建议书和其他参考文献都可能修订;因此,鼓励本建议书的用户调查应用下列建议书和其他参考文献的最新版本的可能性。当前有效的 ITU-T 建议书清单定期发布。本建议书中对某文件的引用并不赋予其作为独立文件的建议书地位。
自由空间光链路 此选项是光纤基础设施无法到达或需要快速/非永久部署 QKD 链路的位置的最佳连接,也是与移动平台通信的唯一解决方案。ThinkQuantum 开发和部署自由空间 QKD 终端,用于全天运营。
UNIT II SYMMETRIC KEY CRYPTOGRAPHY MATHEMATICS OF SYMMETRIC KEY CRYPTOGRAPHY: Algebraic structures – Modular arithmetic-Euclid‟s algorithm- Congruence and matrices – Groups, Rings, Fields- Finite fields- SYMMETRIC KEY CIPHERS: SDES – Block cipher Principles of DES – Strength of DES – Differential and linear cryptanalysis – Block cipher design principles - 块密码操作模式 - AES的评估标准 - 高级加密标准 - RC4 - 密钥分布。对称密钥密码学的数学2.2。模块化算术
(PIV)您的Utrust Fido2 NFC+ Windows 10的安全密钥。使用软件工具检查您的安全密钥的类型和确保软件,或显示序列号,通过OTP加载共享的秘密,在加密术中常用以解密信息,并加载数字认证,设置PIN/PUK或通过PIV进行设置/更改密钥。
– 有人可能会说这还不是 Eve 的最佳策略。Eve 无法不受干扰地提取信息,因为她不知道状态基础。但是,Alice 和 Bob 将在稍后阶段宣布基础,然后 Eve 可以存储状态并对其进行测量,直到基础信息被披露。对此类攻击的安全性的严格证明超出了范围,因此我们在这里仅直观地展示它为何有效。基本思想实际上仍然是信息 - 扰动关系。由于 Eve 不知道基础信息,因此无论在基础宣布之前还是之后,每当 Eve 试图获取任何信息时,她都必须在状态传输阶段对量子态施加一些扰动。否则,她所拥有的状态将独立于 Alice 发送的状态,即使她知道基础,她也无法获得任何信息。然后,如果她对传输状态施加任何扰动,Alice 和 Bob 将从相位或比特错误中知道这一点,并且这些信息将在隐私放大和纠错阶段提取出来。
量子密钥分布或简短的QKD旨在建立一个安全的密钥,而无需对仅受自然法则限制的对手的能力或计算能力做出任何其他假设。在给定相关系统参数的某些QKD协议的安全键率或至少下界的数学表达式的过程中称为安全性证明。在本论文中,我们使用最近的数值证明技术来检查具有正交相移键调制和四个或八个信号状态的连续可变量子密钥分布(CV-QKD)方案的不同后选择后策略。CV-QKD协议使用连贯的状态来编码信息并通过同型或异差检测来测量段落的成分。使用的数值安全性技术的基本思想是在两步过程中解决关键率发现问题。在第一个步骤中,使用数值算法大致解决了该问题,该算法在安全密钥速率上产生上限。接下来是第2步,其中所获得的上限使用定理序列并考虑了数值误差。选择后旨在通过删除钥匙的那些部分来提高安全的密钥利率,在这些部分中,潜在的对手可能比沟通方获得更多信息。对不受信任的理想和受信任的非理想探测器情景进行了研究,我们为与选择后图相关的操作员提供了新的分析结果。
摘要 — 量子密钥分发 (QKD) 是一种能够保持信息论安全性的对称密钥协商协议。鉴于 QKD 网络的最新进展,它们已经从学术研究发展到一些初步应用。QKD 网络由两个或多个通过光纤或自由空间链路互连的 QKD 节点组成。密钥在任意一对 QKD 节点之间协商,然后可以将其传递给各个区域的多个用户,以确保长期保护和前向保密。我们首先介绍 QKD 基础知识,然后回顾 QKD 网络的发展及其在实践中的实现。随后,我们描述了通用的 QKD 网络架构、其元素以及其接口和协议。接下来,我们将深入概述相关的物理层和网络层解决方案,然后介绍标准化工作以及与 QKD 网络相关的应用场景。最后,我们讨论了未来的潜在研究方向并为 QKD 网络提供了设计指南。
摘要。ternary LWE,即具有秘密系数的LWE,而从{ - 1,0,1}取的错误向量是NTRU-Type Cryptosystems中的一个流行选择,以及Bliss和GLP(例如Bliss and GLP)的某些特征方案。在这项工作中,我们考虑对三元LWE的量子组合攻击。我们的算法基于Magnieznayak-Roland-Santha的量子步行框架。我们算法的核心是一种称为表示技术的组合工具,它出现在子集总和问题的算法中。此技术也可以应用于三元LWE,从而产生更快的攻击。这项工作的重点是用于基于代表性的LWE攻击的量子加速。用LWE密钥的搜索空间表示表示时,表示攻击的Asymp-Totic复杂性从S 0降低。24(经典)降至S 0。19(量子)。这转化为明显的攻击的速度 - 用于NTRU-HRSS [CHES'17]和NTRU PRIME [SAC'17]等具体NTRU实例。我们的算法不会破坏当前对NTRU或其他基于三元LWE的方案的安全性要求,但它们可以为在LWE的混合动力攻击中改善组合子例程的改善。
摘要。量子密钥分布(QKD)是一种基于量子力学基本原理,例如海森伯格的不确定性原理和无键值理论。QKD的用法警告了任何攻击尝试的合法交流方,这是最有趣的安全参数。因此,QKD提供了无条件的安全通信方法,并支持强大的加密方案。经典通信与QKD之间的组合创建了一种称为Semi Quantum键分布SQKD的新技术。不幸的是,SQKD提高了方案的复杂性,并且需要两个步骤来进行密码,争夺和加密。在本文中,基于QKD提出了增强图像加密算法,该算法消除了SQKD的大多数缺点。所提出的算法比其他加密方案更简单,因为它仅根据生成的秘密键的功率和随机性来利用一个加密步骤,这减少了破裂的机会。通过数值模拟验证了所提出的算法的正确性和效率。