摘要 神经系统因其对意外感觉输入的强烈反应而臭名昭著,但这种现象的生物物理和解剖学基础仅被部分理解。在这里,我们利用生物详细模型的新皮层微电路的计算机实验来研究听觉皮层中的刺激特异性适应 (SSA),即神经元反应对重复(“预期”)音调有显著的适应性,但对罕见(“意外”)音调则无适应性。通过刺激投射到微电路的音调定位映射的丘脑皮层传入神经来模拟 SSA 实验;这些传入神经的活动是根据我们对单个丘脑神经元的体内记录建模的。建模的微电路自然地表达了许多实验观察到的 SSA 特性,表明 SSA 是新皮层微电路的一般特性。通过系统地调节电路参数,我们发现 SSA 的关键特征取决于突触抑制、尖峰频率适应和循环网络连接的协同作用。探索了这些机制在塑造 SSA 中的相对贡献,解释了与 SSA 相关的其他实验结果,并提出了进一步研究 SSA 的新实验。简介初级听觉皮层 A1 中的神经元表现出一种称为刺激的现象
<2>临床临床临床科学和书房学系。+39 0862 4368–3524-3434-3457-3530-3530 VATOIO,SNC-LOCT-67100 Aquila(aq)P.D.税。01021630668邮件:删除。
神经解码及其在脑机接口 (BCI) 中的应用对于理解神经活动和行为之间的关联至关重要。许多解码方法的先决条件是尖峰分类,即将动作电位 (尖峰) 分配给单个神经元。然而,当前的尖峰分类算法可能不准确,并且不能正确模拟尖峰分配的不确定性,因此丢弃了可能提高解码性能的信息。高密度探针 (例如 Neuropixels) 和计算方法的最新进展现在允许从未排序的数据中提取一组丰富的尖峰特征;这些特征反过来可用于直接解码行为相关性。为此,我们提出了一种无尖峰分类的解码方法,该方法直接使用对尖峰分配的不确定性进行编码的高斯混合 (MoG) 来建模提取的尖峰特征的分布,而不旨在明确解决尖峰聚类问题。我们允许 MoG 的混合比例随时间变化以响应行为,并开发变分推理方法来拟合得到的模型并执行解码。我们用来自不同动物和探针几何的大量记录对我们的方法进行了基准测试,表明我们提出的解码器可以始终优于基于阈值(即多单元活动)和尖峰分类的当前方法。开源代码可在 https://github.com/yzhang511/density_decoding 上找到。
目标受众:对使用扩散 MRI 流线纤维束成像定量评估大脑白质连接感兴趣的研究人员。目的:由于流线重建过程的非定量性质 [1],使用扩散 MRI 定量评估大脑白质连接非常困难。针对该问题提出的解决方案包括启发式校正已知的重建偏差 [2,3](可能无法补偿所有重建误差)或评估连接路径上某些扩散模型参数 [4,5,6](依赖于该参数的量化和可解释性)。最近,提出了球面反卷积信息纤维束成像滤波 (SIFT) 方法 [7],通过选择性去除流线,将重建的流线密度与通过扩散信号球面反卷积估计的单个纤维群体积 [8] 进行匹配;完成此过程后,连接两个区域的流线计数变为连接这些区域的白质通路横截面积的估计值(最高可达全局缩放因子)。之前已证明,如果首先应用 SIFT 方法 [9],大脑连接的定量测量与从人脑解剖估计的特性会更加密切相关。这种方法的缺点是,即使生成了许多流线(计算成本高昂),完成过滤后,流线密度可能非常低(这对于定量分析来说是不可取的 [10,11])。在这里,我们提出了一种替代解决方案,称为 SIFT2:此方法不是去除流线,而是为每条流线得出合适的加权因子,以使总流线重建与测量的扩散信号相匹配。方法:与原始 SIFT 方法一样,我们执行纤维方向分布 (FOD) 分割,将流线分配给它们穿过的 FOD 叶,并得出一个处理掩模,以减少非白质体素对模型的贡献。我们将离散 FOD 叶 L 的积分表示为 FOD L ,将归因于该叶的流线密度表示为 TD L ,将处理掩模 [7] 在该叶所占体素中的值表示为 PM L ;从这些中我们得出比例系数 μ [7](等式 1)。每条流线 S 都有一个关联的加权系数 FS 。FOD 叶 L 中的流线密度定义为(等式 2),其中 | SL | 是流线 S 穿过归因于 FOD 叶 L 的体素的长度。目标是找到一组加权系数 FS ,以最小化成本函数 f(等式 3),其中 λ 是用户可选择的正则化乘数,它将流线加权系数约束为与穿过相同 FOD 叶的其他流线相似(等式 4)。使用迭代线搜索算法可以找到解决方案:每个加权系数都经过独立优化,同时考虑一组相关项,这些相关项表示在对每个系数进行独立牛顿更新的情况下所有 L 的 TD L 的估计变化(等式 5)。数据采集和预处理:图像数据是从健康男性志愿者的 3T Siemens Tim Trio 系统(德国埃尔朗根)上采集的。DWI 协议如下:60 个弥散敏化方向,b =3,000s.mm -2,7 b =0 体积,60 个切片,2.5mm 各向同性体素。使用 MPRAGE 序列(TE/TI/TR = 2.6/900/1900ms,9° 翻转,0.9mm 各向同性体素)获取解剖 T1 加权图像。对弥散图像进行了校正以适应受试者运动 [12]、磁化率引起的扭曲 [13] 和 B 1 偏置场 [14]。使用约束球面反卷积 (CSD) [15] 估计纤维取向分布。使用 iFOD2 概率流线算法 [16] 生成了 1000 万条流线的纤维束图,该算法结合了解剖约束纤维束成像框架 [17] ,随机分布在整个白质中。结果:将 SIFT2 与执行 SIFT“收敛”(移除尽可能多的流线以实现与数据的最佳拟合 [7] )进行了比较。对于 SIFT2,我们使用了 λ = 0.001,这是基于近似 L 曲线分析选择的。SIFT 和 SIFT2 方法都以这样一种方式操纵重建,使得流线密度与通过 CSD 得出的体积估计值高度一致(图 1)。然而,SIFT2 实现了比 SIFT 更优秀的模型拟合,同时保留了初始重建中的所有流线(而 SIFT 必须去除大约 96% 的流线)。根据近似 L 曲线分析选择。SIFT 和 SIFT2 方法都以流线密度与通过 CSD 得出的体积估计值高度一致的方式操纵重建(图 1)。然而,SIFT2 实现了比 SIFT 更好的模型拟合,同时保留了初始重建中的所有流线(而 SIFT 必须删除大约 96% 的所有流线)。根据近似 L 曲线分析选择。SIFT 和 SIFT2 方法都以流线密度与通过 CSD 得出的体积估计值高度一致的方式操纵重建(图 1)。然而,SIFT2 实现了比 SIFT 更好的模型拟合,同时保留了初始重建中的所有流线(而 SIFT 必须删除大约 96% 的所有流线)。
尽管Vision Transformer(VIT)在计算机视觉方面取得了显着的成功,但由于缺乏内部绘制互动和特征量表的多样性有限,它在密集的预测任务中表现不佳。大多数现有的研究致力于设计视觉特定的变压器来解决上述问题,从而涉及额外的培训前成本。因此,我们提出了一种普通的,无培训的且具有特征增强的vit背骨,并具有指定性的特征性动作,称为Vit-Comer,可促进CNN和Transformer之间的双向相互作用。与现状相比,VIT-COMER具有以下优点:(1)我们将空间金字塔多触发性场卷积特征注入VIT体系结构,从而有效地减轻了VIT中局部信息相互作用和单场表述的有限问题。(2)我们提出了一个简单有效的CNN转换器双向交互模块,该模块在跨层次特征上执行多尺度融合,这对Han-dling密集的预测任务有益。(3)我们评估了在各种密集的预测任务,不同框架和多个高级预训练中VIT-COMER的能力。值得注意的是,我们的VIT-COMER-L在没有额外训练数据的情况下可可Val2017上的AP达到64.3%,而ADE20K Val上的MIOU为62.1%,这两种方法都与最先进的方法相当。我们希望VIT-COMER可以作为密集预测任务的新骨干,以促进未来的研究。该代码将在https://github.com/traffic-x/vit-comer上发布。
1 爱沙尼亚生命科学大学农业与环境科学研究所,Kreutzwaldi 5,EE-51006 Tartu,爱沙尼亚;Miguel.Pecina@emu.ee (M.V.P.); R.D.Ward@brighton.ac.uk (R.D.W.); a.vain@ts.ee (A.V.); Kalev.Sepp@emu.ee (K.S.)2 爱沙尼亚生命科学大学林业与乡村工程研究所,Kreutzwaldi 5,EE-51006 Tartu,爱沙尼亚;Mait.Lang@emu.ee (M.L.); tauri.arumae@rmk.ee (T.A.); Diana.Laarmann@emu.ee (D.L.)3 塔尔图天文台,塔尔图大学,Observatooriumi 1,EE-61602 T õ ravere,爱沙尼亚 4 水生环境中心,环境与技术学院,布莱顿大学,Cockcroft 大楼,Moulsecoomb,布莱顿 BN2 4GJ,英国;N.G.Burnside@brighton.ac.uk 5 国家森林管理中心,Sagadi 村,EE-45403 Haljala,爱沙尼亚 * 通讯:raul.sampaio@student.emu.ee
摘要目的:这项研究的目的是使用12周的计算机程序评估神经心理康复,以评估它是否对改善认知功能有效,并确定可用于衡量这种效果的方法。这项研究的目的是证明所选择的教育计划的影响和由此产生的认知功能的状态。方法:与MS(43)的患者分为两组 - 实验组(26)和对照组(17)。所有患者的认知缺陷在研究开始时进行了评估。参加培训计划后,使用神经心理学测试对结果进行监测。实验组的参与者使用他们在家中进行的计算机培训计划对认知功能进行了康复。在预定的日子举行了32次培训课程,并具有特定的详细培训计划。结果:研究结束时使用的神经心理学检验显示了训练计划的积极影响。在立即记忆和关注的领域中看到了最大的进步。结论:结果表明,在遵循计算机培训计划的MS患者中,神经心理康复的阳性影响。
引言 - 在发现[1,2]一个多世纪后,超导性仍然是凝聚态物理学中最深入研究的主题之一,与物质的最基本描述具有深厚的联系[3-6]。这种宏观量子现象的特征在于零电阻,而希格斯则缩合光子大量[3,5,7]以下[3,5,7]低于某些临界温度t c。由具有较小相关效应的良好金属产生的超导体(常规的低t c超导通孔)。在BCS理论中,由于电子之间有效的吸引力,这一现象源于费米表面(FS)的不稳定性。最初,声子的交换介导了该效果。在密切相关的费米子系统(例如繁重的费米子[9,10]和高t c超导性[11-15]中,发现非常规超导性具有淋巴结间隙[11-15],强调了其他玻色子也可能负责配对。在非常规的超导体[16]中,配对机制通常涉及复杂的相互作用,例如自旋波动,电子相关性或轨道效应,导致非平凡的对称性和动量依赖性超导差距。在高t c铜矿中,通过相位敏感的测量结果建立了FS上差距中的节点[17],以确保间隙是具有D x 2-2-y 2波对称性的旋转单元。此外,已经预测并观察到了巡回铁磁体中的p波,可能是p波,旋转三芯对配对[18-22]。最后,已广泛考虑了磁化绝缘体异质结构和各种无间隙的效率系统的镁介导的非常规的超导性[23 - 37]。
由于材料之间的晶格错误匹配,SI底物上窄带III – V材料的大规模整合仍然是一个挑战。[1,2]纳米级开口的外延生长降低了源自III – V/SI界面以传播到活动设备的缺陷的可能性,并证明了表现优势。[3]其他剩余的挑战是模式技术,[4]小型大小,高模式密度和经济高效的处理具有吸引力。高密度模式的一种可能的光刻溶液是块共聚物(BCP)光刻。[5–7]该技术依赖于自组装,这意味着该分辨率不是由clas的局限性设置的,例如辐射波长或接近度效应。[8,9] BCP光刻分辨率极限主要是由其总体聚合度和组成块不信用的程度设定的。[10]该技术是低成本的,允许在高图案密度下转移图案转移 - 至少至12 nm螺距。[11,12]一种特殊的材料,聚(苯乙烯) - 块-poly(4-乙烯基吡啶)(PS-B -P4VP),是所谓的高χBCP,即块之间具有很高的缺失性,这使自组件能够最低10 nm lamelar powd。[13]通过控制聚合物分子量,聚合物块的不混溶,聚合物块的体积分数,底物表面能和表面形象,如果向聚合物链提供足够的迁移率,则可以实现自组装。[14]可以通过添加热量来提供所需的迁移率,[15]通过介入聚合物可溶性蒸气,[16,17]或两者的组合。[18]许多设备应用程序受益于模式对齐,为此,可以使用定向自组装(DSA)来控制模式的定位。[5,6,19–22]然后,通常使用电阻的电子或光子暴露创建引导模式,并且指导是通过改变表面能量或创建不同地形来完成的。[19]
磁共振成像(MRI)自动脑肿瘤分割的主要任务是自动分割脑肿瘤水肿,腹部水肿,内窥镜核心,增强肿瘤核心和3D MR图像的非增强肿瘤核心。由于脑肿瘤的位置,大小,形状和强度差异很大,因此很难自动分割这些脑肿瘤区域。在本文中,通过结合Densenet和Resnet的优点,我们提出了一个新的3D U-NET,具有密集的编码器块和残留的解码器块。我们在编码器部分中使用了密集的块和解码器部分中的残留块。输出特征图的数量随编码器的收缩路径中的网络层增加而增加,这与密集块的特征一致。使用密集的块可以减少网络参数的数量,加深网络层,增强特征传播,减轻消失的梯度和扩大接收场。在解码器中使用残差块来替换原始U-NET的卷积神经块,这使网络性能更好。我们提出的方法在BRATS2019培训和验证数据集上进行了培训和验证。我们在BRATS2019验证数据集上分别获得了整个肿瘤,肿瘤核心和增强肿瘤核心的骰子得分,分别为0.901、0.815和0.766。我们的方法比原始的3D U-NET具有更好的性能。我们的实验结果表明,与某些最新方法相比,我们的方法是一种竞争性的自动脑肿瘤分割方法。