摘要:半导体纳米晶须,特别是基于零维 (0D) C 70 富勒烯的纳米结构晶须,由于其在现代电子学中的巨大应用潜力而受到积极讨论。我们首次提出并实现了一种基于 C 70 分子在基底表面热蒸发过程中自组织的纳米结构 C 70 富勒烯晶须的合成方法。我们发现,在基底表面的甲苯中 C 70 溶液滴蒸发后,C 70 纳米晶须的合成开始取决于基底温度。我们已提供实验证据表明,初始液滴中 C 70 浓度的增加和基底温度的增加都会导致 C 70 纳米晶须的几何尺寸增加。所获得的结果为溶质浓度和基底温度在一维材料合成中的作用提供了有用的见解。
玛丽·加里·富勒(Mary Gary Fuller)•城市状态•2024年3月28日,标记里程碑和积极的势头,晚上好女士和先生们。今晚在这里很荣幸。我想认识到我们当选的官员。我还要感谢Ali和她的团队为Opelika做的另一个伟大活动以及您所做的所有工作。今天,我们聚集在一起标记里程碑,并庆祝使我们的城市前进的积极势头。一起,让我们反思过去一年,我们克服的挑战以及取得的显着进步。通过仔细的财政计划,我们努力充分利用每个资源,以有效,有效地提供基本的服务。是维护基础设施,增强公共安全还是在教育和社会计划上进行投资,我们仍然致力于优先考虑居民的需求,以提高生活质量。今晚不仅反映了我们的立场,而且还证明了我们员工,社区以及在我们面前的领导人的努力。成为您的市长仍然给我带来很多快乐。我们在Opelika非常幸运。我们在财务上是合理的;当我们快速发展时,我们似乎保持着强烈的社区和小镇魅力。现在,让我们回顾一下一些主要的里程碑,以及未来的目标。{经济发展}
了解所用物质导致的兴奋剂和阿片类药物过量风险:我们在 2017 年至 2019 年期间对马萨诸塞州吸毒者进行的形成性研究发现,那些没有定期使用阿片类药物史的人在接触可卡因中的芬太尼时,意外过量服用阿片类药物的风险最高。与其他吸毒者相比,只吸食可卡因的人没有想到可卡因供应中会含有芬太尼,不知道阿片类药物过量的症状,携带纳洛酮的可能性较小,更有可能独自吸毒,在过量时无人干预,并且由于不信任执法部门而不太可能报警。自马萨诸塞州研究开展以来,与兴奋剂和阿片类药物有关的过量死亡人数持续激增。 POINTS 研究旨在了解高风险人群对兴奋剂供应中的芬太尼的了解程度、他们如何应对芬太尼,并通过药物检查确定兴奋剂供应中是否含有芬太尼。我们还探讨了仅使用兴奋剂的人、使用兴奋剂并有定期使用阿片类药物史的人以及同时使用兴奋剂和阿片类药物的人之间的过量用药风险差异。
1.1 这项道路安全战略由达勒姆郡议会、达灵顿自治市议会(简称“议会”)、达勒姆警察局和达勒姆郡及达灵顿消防救援服务部门共同制定。它为维护和改善达勒姆郡和达灵顿的道路安全提供了交付框架。1.2 近年来,道路伤亡人数有所减少,这是值得欢迎的。然而,我们需要继续努力进一步减少道路伤亡。每一次死亡对家人和朋友来说都是一场悲剧。此外,严重的伤害可能会改变生活,对受害者及其家人和朋友的影响深远。1.3 道路伤亡的人员损失永远无法完全量化。然而,使用交通部的方法,我们可以计算出达勒姆郡和达灵顿道路伤亡的经济成本,估计每年为 1.2 亿英镑,这进一步表明减少道路伤亡势在必行。 1.4 此年度数据是根据交通部确定的每种道路伤亡分类的成本计算得出的:
全国拉丁裔教育学院 不适用 $500,000.00 更安全基金会 不适用 $500,000.00 西班牙裔美国人建筑业协会 不适用 $1,000,000.00 Rincon 家庭服务 不适用 $500,000.00 548 基金会 不适用 $500,000.00 坎顿联盟学区 #66 $1,134,874.00 卡本代尔公园区 $80,707.00 凯里米尔斯-斯通福特社区单位学区 #2 $160,918.00 卡本代尔市 $80,707.00 埃尔多拉多市 $199,319.00 哈里斯堡市 $507,898.00 哈瓦那市 $55,482.00 希尔斯伯勒市 $53,154.00 洛克波特市$360,245.00 马里恩市 $57,029.00 牛顿市 $78,168.00 雷德巴德市 $86,776.00 斯普林菲尔德市 $108,636.00 沃基根市 $1,056,772.00 埃尔多拉多学区 $729,416.00 富尔顿县 $924,554.00 富尔顿县紧急医疗协会 $92,287.00
有机太阳能电池受益于非富勒烯受体(NFA),这是由于其高吸收系数,可调的边界能量水平和光学间隙及其相对较高的发光量子量相比,与富勒烯相比。这些优点导致在供体/NFA异质结处的低或可忽略不计的电荷产量高产量,而单个连接设备的官能功率超过19%。以超过20%的高度推动此值需要增加开路电压,目前仍远低于热力学极限。这只能通过减少非辐射重组,从而增加光活动层的电致发光量子效率。在这里,总结了对非辐射衰减的起源以及相关电压损耗的准确定量的理解。强调了抑制这些损失的有希望的策略,重点是新的材料设计,供体 - 受体组合的优化和混合形态。本评论旨在指导研究人员寻求未来的太阳能收获供体 - 受体混合物,该供体的混合物结合了较高的激子分离产量和高辐射性的免费载体重组和低电压损耗的高收益,从而缩小了与内部有机和perovskite photovskite PhotoverSkite Photovalsics的效果差异。