环境科学家需要开发一组通用的清晰概念和定义,以描述生态系统功能并帮助社会迈向持续能力(Aronson,2011年)。富营养化的概念是古老的,可以追溯到Naumann(1919)和Weber(1907)的第一个观察结果,这些观察描述了湖泊中的贫营养和富营养状态。它仍然相关(Le Moal等,2019),因为它所描述的过程与对水生生态系统的最大和最广泛的威胁有关。在文献中可以找到许多对富营养化的定义,从几个词(Claussen等,2009)到完整的段落(Díaz等,2010)。早在1980年,帕尔马就销售了富营养化的不同荷兰定义,并发现其内容的多样性,但在概念的交流中也有一定的困惑。在本研究中,我们试图理解为什么有这么多定义,它们的不同,它们是否包括不同的概念以及有些人是否更加自愿。我们还想知道,富营养化的定义如何解决一个复杂的科学主题和环境威胁,甚至是管理方面。找到的富营养的许多定义
国家评估研讨会参与者 Merryl Alber 佐治亚大学 Donald Boesch 马里兰大学 Thomas Brosnan 美国国家海洋和大气管理局 Brian Cole 美国地质调查局 Elizabeth Cosper Cosper 环境服务公司 Christopher D’Elia 纽约州立大学奥尔巴尼分校 Ernest Estevez 莫特海洋实验室 Peggy Fong 加州大学 Fred Holland 南卡罗来纳州野生动物和海洋资源部 Renee Karrh 马里兰州自然资源部 Jack Kelly 美国环境保护署 Peter Larsen Bigelow 海洋科学实验室 Theodore Loder 新罕布什尔大学 Robert Magnien 马里兰州自然资源部 Michael Mallin 北卡罗来纳大学 Hank McKellar 南卡罗来纳大学 Gary Powell 德克萨斯州水资源开发委员会 Randy Shuman 华盛顿州金县都会区 Richard Smith 美国地质调查局 Ronald Thom Battelle 海洋科学实验室 David Tomasko 西南佛罗里达水资源管理区 Richard Valigura 美国国家海洋和大气管理局 Peter Verity Skidaway 海洋研究所 Richard韦策尔弗吉尼亚海洋科学研究所
在上个世纪,氮(N)和磷(P)输入在人类冲击的分水岭中显着增加,在水污染,富营养化,富营养化,绿色之家气体的损失,生态系统功能和生物损失(Batty)(Battye)中,对水污染,富营养化,绿色房屋气体的损失,2017年;等,2018)。流域的营养预算提供了人们对人为来源的相对重要性的洞察力,即河流负载的主要决定者(Romero等,2021),但是在下游或及时输出的营养量与水力学动态动力学和内部BioCege Cycling紧密相连。在土壤和水域中的几种温度依赖性(例如,有机物矿化和生物晶状体化学N途径)或降水依赖性(例如径流和侵蚀过程)发生在景观之间,并塑造了养分动员的时间和宏观的时间,而Baron等人(Baron等人,2013年,2013; Wagena et; Wagena et al。由于富营养化和硝酸盐(第3--)污染,世界各地的许多河流都承受着压力,但是它们的生态后果与Climate变化的影响和结果相互作用重叠,可能是复杂的,尚未完全理解(Rozemeijer等人,2021年; Meerhoff等,2021; Meerhoff等,20222; 2022; 2022; 2022; 2022222222222。河网络相对于处理人为n输入的表面区域而言,其表面积非常重要。温暖可能会影响反硝化,这既是参与活性的直接效应,又是温度对氧化还原条件的间接作用。气候变化可能会影响河流的生物地球化学动态和生态功能,通过影响从陆地生态系统中营养的数量和时机,通过更改稀释能力以及内部耗散和回收过程的稀释能力以及稀释能力的程度(Goyette等,2019; abily et al。; aby et an and and; aby and an。在全球范围内,沿着陆地水平的水陆连续体去除了流域中产生并转移到河流的75%以上(Seitzinger等,2006; Howarth等,2012)。在这些系统中,通过将硝酸盐(NO 3-)减少到氮气(N 2)下,微生物DEN- ITRIFICATY在低氧 - 氧化剂条件下通过硝酸盐(NO 3-)进行了永久性n(Birgand等,2007; Reisinger et al。,2016; Hill,2023)。较高的水温可降低氧溶解度,并增强沉积物氧呼吸,限制氧渗透深度并导致刺激非硝化作用的协同作用(De Klein等,2017; Velthuis and Veraart,Veraart,2022)。在强烈取决于硝化细菌的NO 3-供应的情况下,在较高的水温下氧气降低可能导致硝化降低,因此降低了硝化剂,因此降低了硝化(Pina-ochoa和pina-ochoa andálvarez-cobelas,2006; Birgand et al。,2007年)。同时,多种非生物和生物过程(例如吸附,颗粒沉积,腹膜和植物浮游生物的摄取)负责河流沉积物中的p保留,并解释了该元素的临时存储(Yuan等,2018; Goyette et al。,2019年)。总体而言,河流在高度动态的环境中积极转化,暂时存储并永久地移动营养
富营养化被认为是对全球河口和沿海生态系统健康的最大威胁之一。这是一种全球现象,对食物网,水质和水生化学反应有显着影响。富营养化是向河口和沿海地区供应生态系统生态能力的结果(Nixon,2009; Rabalais等,2009)。营养负荷也可能导致养分比的变化,这可能会在海洋生态系统中产生“不良干扰”。在这一目标中,至关重要的是,沿海地区可以实现良好的环境地位(GES)。引起沿海富营养化的驾驶员设置在多个人类诱发的压力源和富营养化的影响的较大框架内(例如生物多样性,生态系统降解,有害藻类绽放和底部水中的氧气表现出现的损失似乎受到与其他压力的协同作用的加剧,包括过度的压力,沿海沿海发育过度,沿海发育和气候驱动的升高,海水表面温度,海洋酸性和沿海沿岸排放。实际上,气候变化会影响养分的投入和行为,并可能加剧富营养化及其相关的负面影响(Statham,2012; Malone and Newton,2020; Rozemeijer等,2021)。富营养化对水生环境的健康的重要性及其与多种压力的联系导致汇编了当前的研究主题:“在富营养化过程中,气候变化与人为压力之间的局限性,第二卷”。然而,气候变化与富营养化之间的联系很复杂,主要与温度,风向模式,水文周期和海平面上升有关,导致淡水系统的淹没,地层的变化,流动时间和流动性时间和植物生产力,生产力,沿海风暴的活动,沿海风暴活动,物种和ecosys的变化(2012年)。
12:00监测对生态系统威胁并优化大洋洲的管理策略的新指标和方法:来自最近和正在进行的与生态系统富营养化,热浪,渔业,渔业和水产养殖有关的作品出现了几个例子。” 。12:00监测对生态系统威胁并优化大洋洲的管理策略的新指标和方法:来自最近和正在进行的与生态系统富营养化,热浪,渔业,渔业和水产养殖有关的作品出现了几个例子。”
Luteibacter 属是 Rhodanobacteraceae 科的一部分,属于变形菌门的 γ 亚纲。该科包含 17 个属,分别是 Aerosticca、Ahniella、Aquimonas、Chiayiivirga、Denitratimonas、Dokdonella、Dyella、Frateuria、Fulvimonas、Luteibacter、Oleiagrimonas、Pinirhizobacter、Pseudofulvimonas、Rehaibacterium、Rhodanobacter、Rudaea 和 Tahibacter,其中两个属尚未有效发表(Denitratimonas 和 Pinirhizobacter)[1]。Luteibacter 属由 Johansen 等人 [2] 基于 Luteibacter rhizovicinus DSM 16549 T 种建立。该属目前包含 5 个种,其中 3 个已有效发表:L. rhizovicinus DSM 16549 T [ 2 ]、L. yeojuensis DSM 17673 T [ 3 , 4 ]、L. anthropi CCUG 25036 T [ 4 ],以及 L. jiangsuensis [ 5 ] 和 L. pinisoli [ 6 ]。Luteibacter 属的成员分离自各种环境,例如根际土壤 [ 2 , 6 ]、温室土壤 [ 3 ] 和人体血液 [ 4 ]。它们被描述为具有运动能力的、需氧的革兰氏阴性菌,呈杆状,呈黄色。此外,它们是过氧化氢酶和氧化酶阳性和脲酶阴性的。迄今为止,Luteibacter 或甚至是 Rhodanobacterceae 相关噬菌体都是未知的。噬菌体或细菌噬菌体是感染细菌的病毒。虽然温和噬菌体可以整合到细菌基因组中,但溶菌噬菌体在感染后直接开始繁殖。温和噬菌体会将其整合的基因组与宿主基因组一起复制,从而产生原噬菌体和溶原性细菌。通过添加其遗传物质,原噬菌体可以提供新的能力,保护宿主免受相关和不相关病毒的感染 [ 7 ]。在之前的研究中,我们从位于德国哥廷根的一个富营养化池塘中分离出一种环境 Luteibacter sp. nov. 菌株。分离 Luteibacter 菌株作为预期模型菌株,以研究与细菌感染相关的局部病毒多样性。
土壤健康及其对下游的影响:施用植物养分的田地径流会导致水质受损。径流中的磷是导致淡水富营养化的一个因素,富营养化会促进蓝藻和藻类的生长,导致水中氧含量降低和毒素积聚。健康的土壤与保护水体:土壤是地球上最大的天然水过滤器;当水流经土壤时,自然过程会结合、分解或去除污染物。土壤的持水能力可以减缓水的渗透,降低洪水发生的可能性。健康的土壤提供的服务包括:
1。基于气候变化改编的水安全2。水资源的污染和富营养化,主要是titicaca,Uru Uru和Poopólakes。3。还原本地渔业资源的库存。4。提高公众对照顾水质和自然资源的重要性的认识。