- 识别在创新核系统预期条件下驱动材料响应的机制。这些机制可以按照多尺度方法在原子或更高尺度上描述。尺度桥接问题以及先进的模拟技术和数据驱动的建模/学习特别令人感兴趣。 - 离子和中子辐照,以及腐蚀和高温暴露实验,以及随后对材料微观结构、降解模式、时间相关特性、机械性能、热性能、辐射耐受性、环境抗性的表征。 - 用于生产和优化材料和组件的新颖和先进方法(包括数值方法):例如,高性能涂层、增材制造、激光烧结和用于相似和不同材料的创新连接技术。金属合金、陶瓷和陶瓷复合材料、用于核应用的先进/新型材料:
Heather Williams 是战略与国际研究中心 (CSIS) 核问题项目主任和国际安全项目高级研究员。她还是哈佛大学肯尼迪学院贝尔弗科学与国际事务中心原子管理项目的副研究员。在加入 CSIS 之前,她是原子管理项目的访问学者,也是麻省理工学院安全研究项目的斯坦顿核安全研究员。直到 2022 年,她一直担任伦敦国王学院国防研究高级讲师(副教授),教授军备控制、威慑和裁军课程。2018 年至 2019 年,威廉姆斯博士担任上议院国际关系委员会对《核不扩散条约》和裁军调查的专家顾问,直到 2015 年,她一直担任查塔姆研究所的研究员。她之前曾在国防分析研究所的战略、部队和资源部门工作,现在仍是该部门的兼职研究员。威廉姆斯博士拥有伦敦国王学院战争研究博士学位、乔治华盛顿大学安全政策研究硕士学位、以及波士顿大学国际关系和俄罗斯研究学士学位。
任何工程设计都隐含着一个潜在的优化问题,尽管很少明确说明要优化的确切目标函数。核系统优化与核工程学科一样古老。核工业的先进制造技术为重新审视优化打开了大门,而这在以前是不可能的,即确定给定目标函数的最佳几何形状。一个简单的例子是球体,它是在临界配置中最小化裸裂变材料的体积(或质量)的形状。然而,即使在最简单的多物理场考虑下,这个问题也变得不那么简单了。在这项工作中,我们开发了一种解决方案,用于在强制流冷却条件下,在 1,500 pcm 过量反应性和 618°C 最高燃料温度的多物理场约束下寻找最小体积几何配置。将解决方案几何形状仅限制为直圆柱体,令人惊讶的是,会产生两个不相交的解区域。扁平、宽(盘状)圆柱体和高、窄(棒状)圆柱体都满足约束条件,并产生非常相似的最小体积。然而这项工作的最终追求是真正的任意几何。关键词:核系统设计、优化、任意几何、人工智能。
作者要感谢军备控制协会的同事,特别是执行董事 Kimball 和高级政策分析师 Shannon Bugos,感谢他们为编写本报告提供的帮助。Kimball 构思了《今日军备控制》中的“明日军备控制”系列,这导致了本报告各章节的原始版本,后来又将它们汇编成一份文件;他还阅读了文本并提出了多项改进建议。Bugos 为作者提供了有关该领域最新发展的宝贵指导,并对最终文本做出了许多有益的改进;她还贡献了第 35-36 页的美国、俄罗斯和中国高超音速武器表格和第 63 页的术语表。ACA 核政策实习生 Heather Foye 也协助编辑了文本。作者要特别感谢制作编辑 Allen Harris 在报告设计和布局方面所做的熟练和创造性工作。
本报告专门讨论了理想特性的开发,并列出了对示例数字系统进行首次可靠性研究的过程。这项工作表明,事件树/故障树和马尔可夫建模的传统方法似乎对数字 I&C 系统的 PRA 有用,但也揭示了使用传统 PRA 方法对数字系统进行建模的最新技术的局限性以及需要进行额外研究和开发的地方。该报告提供了在这项工作中获得的其他见解和结论,并提出了将这些方法应用于首次可靠性研究时要开展的活动。请注意,为了遵循上述主要目标,该项目通常不会涉及最新技术的进步,例如软件故障风险评估。
强大的海军对美国的安全至关重要,美国是一个利益遍布全球的国家,其绝大部分贸易都是通过跨洋运输进行的。海军战舰每天每小时都部署在世界各地,以提供可靠的“前沿存在”,随时准备在美国利益受到威胁的任何地方作出反应。核推进系统在其中发挥着至关重要的作用,它提供了机动性、灵活性和耐力,而这正是当今规模较小的海军完成越来越多的任务所必需的。海军 40% 以上的主要战斗人员都是核动力的:10 艘航空母舰、54 艘攻击型潜艇和 18 艘战略潜艇(美国最具生存力的威慑力量)——其中 4 艘已从战略服务中撤出,并改装成隐蔽、大容量、精确打击平台,即 SSGN。海军核推进计划(也称为海军反应堆)的任务是提供军事上有效的核推进装置,并确保其安全、可靠和长寿命运行。这项任务需要训练有素的美国海军男女官兵与在耐力、隐身性、速度和独立于物流供应链方面表现出色的舰船相结合。海军反应堆组织法规,50 U.S.C.§§ 2406、2511,编纂总统行政命令 12344,规定海军反应堆对海军核推进的所有方面负有全部责任,包括海军核推进装置的研究、设计、建造、测试、运行、维护和最终处置。该计划的职责包括所有相关设施、放射控制、环境安全和健康问题,以及人员的选拔、培训和分配。所有这些工作都是由一个精简的网络完成的,该网络由专门的研究实验室、具有核能力的造船厂、设备承包商和供应商以及培训设施组成,由一个小型总部工作人员集中控制。海军反应堆主任是海军上将约翰·M·理查森,他还担任国家核安全局副局长。海军反应堆保持着超过 1.51 亿英里的核动力安全行驶里程的出色记录。该计划目前运行着 97 座反应堆,累计运行时间超过 6,500 反应堆年。作为环境保护领域的领导者,该计划自 20 世纪 60 年代以来每年都发布环境报告,表明该计划并未对人类健康或环境质量产生不利影响。由于该计划的可靠性,美国核动力军舰受到 50 多个国家和属地 150 多个停靠港的欢迎。自从 1955 年 USS NAUTILUS (SSN 571) 首次发出“核动力航行”信号以来,50 多年前,我们的核动力舰艇已经证明了其在保卫国家方面的优势——从冷战到今天的非常规威胁,再到确保美国海上力量在未来占据主导地位的进步。
麦坚迪政府刚刚发布了《绿色能源法案》。鉴于政客长期以来取悦选民以获得人气的传统,该法案的出台并不令人意外。谁可能不支持“绿色”倡议?每个人都关心我们的地球。每个人都担心气候变化。每个人都会为清洁空气、清洁水和清洁能源的乌托邦而奋斗。现在,公众强烈认为“绿色”倡议将带来更健康的地球,同时他们仍然可以享用早晨的吐司和热咖啡。但《绿色能源法案》到底有多“绿色”?《绿色能源法案》为在我们原始的土地上快速发展大型风力涡轮机农场铺平了道路。但由于风力波动,必须燃烧天然气来稳定电网。当然,天然气是温室气体 (GHG) 的排放源。太阳能也是如此,因为阳光会变化。大规模太阳能发电的成本非常高,这就是为什么政府愿意为太阳能发电支付十倍于平均电网价格的费用,以使太阳能开发对投资者具有吸引力。当然,屋顶上的太阳能电池板将为您带来水电补贴。屋顶太阳能集热器适用于低层、大面积且供暖成本高昂的建筑(例如 AECL 的 Whiteshell 研究设施使用的太阳能收集系统,每年可节省数十万美元的供暖费用)。然而,太阳能对于大规模