寡糖(来自希腊语ὀλίγοςOlígos,“少数”和σάκχαρSácchar,“糖”)是糖(糖)聚合物,其中包含少量数量(通常为3-10个或更多)单糖(简单糖)。与大多数其他哺乳动物的牛奶不同,人乳是独特的,因为它含有高浓度的150多种不同且结构上不同的寡糖。实际上,对于5-15 g/L,成熟牛奶中的人牛奶寡糖(HMO)的总浓度通常超过人奶蛋白的总浓度,使HMOS成为仅次于简单的牛奶糖乳糖和脂质的第三大分子,而不是计算水[1]。HMO包含多达5个不同的构建块(单糖):葡萄糖(GLC),半乳糖(GAL),N-乙酰基葡萄糖胺(GLCNAC),Fucose(FUC)和唾液酸(SIA)。根据使用了哪些构建块以及如何将它们链接在一起[1],从而生成不同的HMO。图1a显示了HMO结构组件的蓝图。所有HMO在还原端携带乳糖(GALβ1-4GLC)。乳糖可以通过二糖乳糖-N-生物(GALβ1–3GLCNAC)或n-乙酰氨基胺(GALβ1-4GLCNAC)的添加来拉长。乳糖或细长链可以用唾液酸在α2-3-或α2-6-链接中修饰,在α1-2-,α1-3-或α1-3-或α1-4链接中进行葡萄糖基化,从而大大扩展了HMO结构组合的多样性。对于外部,每种唾液酸单糖都包含一个羧基,并引起对HMO分子的负电荷,从而改变了其结构特性。HMO结构通常决定其功能[2]。尽管HMO组成遵循基本的蓝图和150多个不同的HMO,但迄今已确定了150多个不同的HMO,但重要的是要注意,每个女性都合成并分泌出不同的HMO组成曲线,在不同女性之间有很大的不同(图1b),但在同一妇女的哺乳过程中保持相当恒定[3]。到目前为止,我们的实验室已经分析了从世界各地女性收集的10,000多个牛奶样本中的HMO组成,作为各种协作项目的一部分。图1C列出了主成分(PC)图中的某些数据,再次强调了女性之间的HMO组成图谱有所不同,但也存在明显的HMO剖面簇或HMO lactotypes。
veret pa和al。J部门1995; 270:29515-29519。Erney和Al。J胃肠烯醇小儿。2000年2月; 30:181-9veret pa。食物增量J JPN。2005;(11):1018-1benenseck j和al。PLOS ONE。 2013 山和Al。 非修订版 2013年12月; 71(12):773-8 m,请参阅大胆,然后。 J农业食品化学。 2013年3月6日; 61(9):2109-1 ye,Ceng Chen,David S Newburg。 糖生物学。 2013年11月; 23(11):1281-9 chow j和al。 j proteom res。 2014; 13:2534-2542。 mcewen g和al。 Nutr Sci食物。 2014; 5:1387–1398。 kc外套和al。 PLOS ONE。 2014; 9(7):E101692。 Holscher和Al。 营养的肩膀。 2014; 144:586-5 标准A和Al。 才华。 2014; 118:137-146。 Y,Liu s,Sun Land,DS的新闻记者。 免疫音乐。 2014; 7(6):1326-3 BJ的婚姻和Al。 J胃肠烯醇小儿。 2015; 61(6):649-658。 Castle-Cortin Castle L和Al。 最长。 2015; 70:1091-1 e和al。 J Nutr Biochem。 2015; 26(5):455–465。 he y和al。 Nutr Adv。 2016; 7(1):102-1 kc外套和al。 j nut。 2016; 146(12):2559-2566。 e和al。 PLOS ONE。 部分J.PLOS ONE。2013山和Al。 非修订版 2013年12月; 71(12):773-8 m,请参阅大胆,然后。 J农业食品化学。 2013年3月6日; 61(9):2109-1 ye,Ceng Chen,David S Newburg。 糖生物学。 2013年11月; 23(11):1281-9 chow j和al。 j proteom res。 2014; 13:2534-2542。 mcewen g和al。 Nutr Sci食物。 2014; 5:1387–1398。 kc外套和al。 PLOS ONE。 2014; 9(7):E101692。 Holscher和Al。 营养的肩膀。 2014; 144:586-5 标准A和Al。 才华。 2014; 118:137-146。 Y,Liu s,Sun Land,DS的新闻记者。 免疫音乐。 2014; 7(6):1326-3 BJ的婚姻和Al。 J胃肠烯醇小儿。 2015; 61(6):649-658。 Castle-Cortin Castle L和Al。 最长。 2015; 70:1091-1 e和al。 J Nutr Biochem。 2015; 26(5):455–465。 he y和al。 Nutr Adv。 2016; 7(1):102-1 kc外套和al。 j nut。 2016; 146(12):2559-2566。 e和al。 PLOS ONE。 部分J.山和Al。非修订版2013年12月; 71(12):773-8m,请参阅大胆,然后。J农业食品化学。2013年3月6日; 61(9):2109-1ye,Ceng Chen,David S Newburg。糖生物学。2013年11月; 23(11):1281-9chow j和al。j proteom res。2014; 13:2534-2542。 mcewen g和al。 Nutr Sci食物。 2014; 5:1387–1398。 kc外套和al。 PLOS ONE。 2014; 9(7):E101692。 Holscher和Al。 营养的肩膀。 2014; 144:586-5 标准A和Al。 才华。 2014; 118:137-146。 Y,Liu s,Sun Land,DS的新闻记者。 免疫音乐。 2014; 7(6):1326-3 BJ的婚姻和Al。 J胃肠烯醇小儿。 2015; 61(6):649-658。 Castle-Cortin Castle L和Al。 最长。 2015; 70:1091-1 e和al。 J Nutr Biochem。 2015; 26(5):455–465。 he y和al。 Nutr Adv。 2016; 7(1):102-1 kc外套和al。 j nut。 2016; 146(12):2559-2566。 e和al。 PLOS ONE。 部分J.2014; 13:2534-2542。mcewen g和al。Nutr Sci食物。2014; 5:1387–1398。 kc外套和al。 PLOS ONE。 2014; 9(7):E101692。 Holscher和Al。 营养的肩膀。 2014; 144:586-5 标准A和Al。 才华。 2014; 118:137-146。 Y,Liu s,Sun Land,DS的新闻记者。 免疫音乐。 2014; 7(6):1326-3 BJ的婚姻和Al。 J胃肠烯醇小儿。 2015; 61(6):649-658。 Castle-Cortin Castle L和Al。 最长。 2015; 70:1091-1 e和al。 J Nutr Biochem。 2015; 26(5):455–465。 he y和al。 Nutr Adv。 2016; 7(1):102-1 kc外套和al。 j nut。 2016; 146(12):2559-2566。 e和al。 PLOS ONE。 部分J.2014; 5:1387–1398。kc外套和al。PLOS ONE。 2014; 9(7):E101692。 Holscher和Al。 营养的肩膀。 2014; 144:586-5 标准A和Al。 才华。 2014; 118:137-146。 Y,Liu s,Sun Land,DS的新闻记者。 免疫音乐。 2014; 7(6):1326-3 BJ的婚姻和Al。 J胃肠烯醇小儿。 2015; 61(6):649-658。 Castle-Cortin Castle L和Al。 最长。 2015; 70:1091-1 e和al。 J Nutr Biochem。 2015; 26(5):455–465。 he y和al。 Nutr Adv。 2016; 7(1):102-1 kc外套和al。 j nut。 2016; 146(12):2559-2566。 e和al。 PLOS ONE。 部分J.PLOS ONE。2014; 9(7):E101692。 Holscher和Al。 营养的肩膀。 2014; 144:586-5 标准A和Al。 才华。 2014; 118:137-146。 Y,Liu s,Sun Land,DS的新闻记者。 免疫音乐。 2014; 7(6):1326-3 BJ的婚姻和Al。 J胃肠烯醇小儿。 2015; 61(6):649-658。 Castle-Cortin Castle L和Al。 最长。 2015; 70:1091-1 e和al。 J Nutr Biochem。 2015; 26(5):455–465。 he y和al。 Nutr Adv。 2016; 7(1):102-1 kc外套和al。 j nut。 2016; 146(12):2559-2566。 e和al。 PLOS ONE。 部分J.2014; 9(7):E101692。Holscher和Al。营养的肩膀。2014; 144:586-5标准A和Al。才华。2014; 118:137-146。 Y,Liu s,Sun Land,DS的新闻记者。 免疫音乐。 2014; 7(6):1326-3 BJ的婚姻和Al。 J胃肠烯醇小儿。 2015; 61(6):649-658。 Castle-Cortin Castle L和Al。 最长。 2015; 70:1091-1 e和al。 J Nutr Biochem。 2015; 26(5):455–465。 he y和al。 Nutr Adv。 2016; 7(1):102-1 kc外套和al。 j nut。 2016; 146(12):2559-2566。 e和al。 PLOS ONE。 部分J.2014; 118:137-146。Y,Liu s,Sun Land,DS的新闻记者。免疫音乐。2014; 7(6):1326-3BJ的婚姻和Al。 J胃肠烯醇小儿。 2015; 61(6):649-658。 Castle-Cortin Castle L和Al。 最长。 2015; 70:1091-1 e和al。 J Nutr Biochem。 2015; 26(5):455–465。 he y和al。 Nutr Adv。 2016; 7(1):102-1 kc外套和al。 j nut。 2016; 146(12):2559-2566。 e和al。 PLOS ONE。 部分J.BJ的婚姻和Al。J胃肠烯醇小儿。2015; 61(6):649-658。Castle-Cortin Castle L和Al。最长。2015; 70:1091-1e和al。J Nutr Biochem。2015; 26(5):455–465。 he y和al。 Nutr Adv。 2016; 7(1):102-1 kc外套和al。 j nut。 2016; 146(12):2559-2566。 e和al。 PLOS ONE。 部分J.2015; 26(5):455–465。he y和al。Nutr Adv。2016; 7(1):102-1kc外套和al。j nut。2016; 146(12):2559-2566。 e和al。 PLOS ONE。 部分J.2016; 146(12):2559-2566。e和al。PLOS ONE。 部分J.PLOS ONE。部分J.2016; 11(11):E01666070gajzer j和al。2016; 30(补充1):671.4。 noll aj和al。 Biochem J. 2016; 473-1343-1 橄榄E,Ramire M,Vazquez E和Al。 J Nutr Biochem。 好M,Al。 br j nutr。 2016年10月; 116(7):1175–1187。 thangaram t和al。 J乳业科学。 2017; 100:7825-7833。 e和al。 br j nutr。 2017; 117(2):237-247。 高清盐和Al。 J胃肠烯醇小儿。 2017; 64(2):296-3 橄榄E和Al。 营养。 2018; 10:1 Zehra S,Cambati I和Al。 J食品科学。 2018; 83(2):499-5 ej和al。 营养。 2018; 10:E1346。 st s和al。 2019; 63(13):E1 震惊,黄A和al。 PLOS ONE。 2019;2016; 30(补充1):671.4。noll aj和al。Biochem J.2016; 473-1343-1橄榄E,Ramire M,Vazquez E和Al。J Nutr Biochem。好M,Al。br j nutr。2016年10月; 116(7):1175–1187。thangaram t和al。J乳业科学。2017; 100:7825-7833。 e和al。 br j nutr。 2017; 117(2):237-247。 高清盐和Al。 J胃肠烯醇小儿。 2017; 64(2):296-3 橄榄E和Al。 营养。 2018; 10:1 Zehra S,Cambati I和Al。 J食品科学。 2018; 83(2):499-5 ej和al。 营养。 2018; 10:E1346。 st s和al。 2019; 63(13):E1 震惊,黄A和al。 PLOS ONE。 2019;2017; 100:7825-7833。e和al。br j nutr。2017; 117(2):237-247。 高清盐和Al。 J胃肠烯醇小儿。 2017; 64(2):296-3 橄榄E和Al。 营养。 2018; 10:1 Zehra S,Cambati I和Al。 J食品科学。 2018; 83(2):499-5 ej和al。 营养。 2018; 10:E1346。 st s和al。 2019; 63(13):E1 震惊,黄A和al。 PLOS ONE。 2019;2017; 117(2):237-247。高清盐和Al。 J胃肠烯醇小儿。 2017; 64(2):296-3 橄榄E和Al。 营养。 2018; 10:1 Zehra S,Cambati I和Al。 J食品科学。 2018; 83(2):499-5 ej和al。 营养。 2018; 10:E1346。 st s和al。 2019; 63(13):E1 震惊,黄A和al。 PLOS ONE。 2019;高清盐和Al。J胃肠烯醇小儿。2017; 64(2):296-3橄榄E和Al。 营养。 2018; 10:1 Zehra S,Cambati I和Al。 J食品科学。 2018; 83(2):499-5 ej和al。 营养。 2018; 10:E1346。 st s和al。 2019; 63(13):E1 震惊,黄A和al。 PLOS ONE。 2019;橄榄E和Al。营养。2018; 10:1Zehra S,Cambati I和Al。J食品科学。2018; 83(2):499-5ej和al。营养。2018; 10:E1346。 st s和al。 2019; 63(13):E1 震惊,黄A和al。 PLOS ONE。 2019;2018; 10:E1346。st s和al。2019; 63(13):E1震惊,黄A和al。PLOS ONE。 2019;PLOS ONE。2019;
作者 A Varki · 被引用 7121 次 — kctJB 基因及其在植物防御中的作用。fiaa Crfl。3, 1-9。134。EtdcM.E.(1992) 植物病原体:分子生物学、合成和功能。在 Allen.HJ...
摘要。植物具有先天的免疫系统和保护性机制,可抵抗致病性微生物的攻击。与哺乳动物不同,它们缺乏移动防御细胞,因此依靠自主细胞事件进行保护。这些细胞具有检测病原体的广泛识别能力,因此填补了自适应免疫系统的空白。这些保护机制将保持不活跃或潜在,直到暴露于诱导剂或应用刺激后被激活为止。只有在受病原体或同一引起者影响之后,它们才开始表现出活跃状态。寡糖在植物免疫中的作用逐渐引起广泛的关注。因此,本文总结了与植物免疫相关的寡糖的功能,并提供了诱发防御事件的例子。也已经提出了糖分子作为植物中信号分子的识别。在这篇综述中,我们着重于植物免疫中寡糖的发展和应用,及其在农业领域的潜在价值。
自然化合物的治疗潜力由于研究人员的生物相容性提高和可持续的起源而引起了研究人员的兴趣。Chitosan对其治疗特性及其在食品和饮料领域的广泛应用引起了极大的关注。壳聚糖寡糖(COS)是壳聚糖的衍生物,通常表现出比其母体化合物更好的生物学特性,从而扩大了对其潜在益处的兴趣。壳聚糖具有多种生物学特性,包括抗菌,抗氧化剂和抗炎化合物。研究已经阐明了壳聚糖的特定化学特征,例如分子量和脱乙酰化程度,影响这些生物学活性。值得注意的是,较低的分子量和较高程度的脱乙酰化倾向于增强壳聚糖的生物学特性。因此,研究越来越集中于探索cos的潜力。对这些化合物的研究已在管理各种疾病中揭示了有希望的应用,包括代谢综合征,糖尿病(DM),高胆固醇血症和肥胖症。
近年来,非消化性功能性寡糖因其独特的益生元活性、工艺特点和生理效应而受到广泛关注。在生产非消化性功能性寡糖的各种策略中,酶法生产因其反应产物的结构和组成的可预测性和可控性而受到青睐。非消化性功能性寡糖已被证明具有良好的益生元作用以及其他对肠道健康的益处。它们作为功能性食品配料,可用于改善各种食品的品质和理化特性,展现出巨大的应用潜力。本文综述了食品工业中几种典型的非消化性功能性寡糖的酶法生产研究进展,包括半乳寡糖、木寡糖、甘露寡糖、壳寡糖和人乳寡糖。此外,还讨论了它们的物理化学性质和益生元活性以及它们对肠道健康的贡献和在食品中的应用。
摘要背景:婴儿肠道微生物组是一个复杂的社区,会影响短期和长期健康。它的组装和组成受诸如喂食类型之类的变量控制。母乳为婴儿提供了重要的人乳寡糖供应(HMO),这是一个宽阔的碳水化合物家族,其中包括中性,诱导和溶解的分子。HMO与婴儿肠道中双歧杆菌物种的过度分泌之间存在正相关,这是由这些物种基因组中存在的多种分子决定因素维持的。婴儿gut相关的双歧杆菌种类通常具有相似的利基市场,并显示出相似的HMO倾向,这表明它们争夺了这些资源。也有强有力的证据表明,HMO衍生分子和双歧杆菌之间的交叉相互作用。
摘要:在人和牛奶中发现的一组复杂碳水化合物牛奶寡糖(MOS)已成为早期最佳脑发育的潜在调节剂。本综述通过综合临床前模型和人类观察性研究的当前文献来综合当前文献,对乳寡糖对脑和神经认知的影响进行了全面研究。文献搜索是在PubMed搜索引擎中进行的,并由三名审阅者评估了包含资格。总体而言,我们确定了26篇文章以进行分析。文献支持岩藻糖基化和溶解的牛奶寡糖在学习,记忆,执行功能和大脑结构发育中的关键作用,但却确定了局限性。在临床前模型中,仅补充最丰富的MOS可能会忽略天然发生的MOS组成的复杂性。同样,由于潜在的混杂作用(例如配方喂养),精确量化了人类研究中的MOS摄入量是有挑战性的。从机械上讲,MOS被认为会通过调节微生物群和增强神经元信号传导来影响神经发育。然而,我们的理解进一步发展需要进行临床随机控制试验,以阐明牛奶寡糖暴露的特定机制和长期影响。了解牛奶寡糖与认知之间的相互作用可能有助于早期营养策略,以实现儿童最佳认知结果。
在当前研究中评估了肠道菌群的多样性。 Results: The galactooligosaccharides positively a ff ected the glycemic status of the experimental animals as the diabetic and healthy rats had lower blood glucose concentration after 6 weeks of treatment (diabetic rats: week 4 vs. week 8, p=0.047; healthy rats: week 2,4,6,10 vs. week 8, p=0.001, p=0.000, p=0.025 and p=0.001, 分别)。 与糖尿病对照相比,当对糖尿病大鼠施用时,观察到半乳二糖糖的正效应(P = 0.020)。 有氧训练的糖尿病大鼠观察到了相似的结果(p = 0.004)。 对细菌物种的鉴定显示出了微生物的多样性,并表明双杆菌,乳酸菌Feritoshensis和大肠杆菌是分析属中最丰富的物种。 结论:益生元治疗有益地影响1型糖尿病大鼠的高血糖和生长。 有氧训练的最显着影响是形态学参数的改善。 寡糖给药和锻炼没有影响细菌物种的影响。在当前研究中评估了肠道菌群的多样性。Results: The galactooligosaccharides positively a ff ected the glycemic status of the experimental animals as the diabetic and healthy rats had lower blood glucose concentration after 6 weeks of treatment (diabetic rats: week 4 vs. week 8, p=0.047; healthy rats: week 2,4,6,10 vs. week 8, p=0.001, p=0.000, p=0.025 and p=0.001, 分别)。与糖尿病对照相比,当对糖尿病大鼠施用时,观察到半乳二糖糖的正效应(P = 0.020)。有氧训练的糖尿病大鼠观察到了相似的结果(p = 0.004)。对细菌物种的鉴定显示出了微生物的多样性,并表明双杆菌,乳酸菌Feritoshensis和大肠杆菌是分析属中最丰富的物种。结论:益生元治疗有益地影响1型糖尿病大鼠的高血糖和生长。有氧训练的最显着影响是形态学参数的改善。寡糖给药和锻炼没有影响细菌物种的影响。
不可否认的是,对于那些无法治愈且已知病因的遗传性疾病患者来说,他们感到沮丧,目前对某些患者来说,只有管理才能解决问题,直到病情恶化导致患者死亡。1,2 当已明确特征的基因变化与遗传性疾病有因果关系时,可以制定专门的治疗方法。几十年来,选择性基因沉默、淬灭或干扰 NAT,以及最近的基因组编辑的吸引力,有望成为人类疾病精准和个性化治疗未来的革命性飞跃。3 – 5 这些疗法具有高度特异性,可以通过精心设计和细致的靶标筛选来限制有害和有毒副作用的实现,这是一个吸引人的特点。6