摘要:植物病毒是重要的病原体类别,严重影响植物生长和损害作物的生产。病毒的结构很简单,但在突变中很复杂,因此始终对农业发展构成了持续威胁。低阻力和生态友好性是绿色农药的重要特征。植物免疫剂可以通过激活植物调节其代谢来增强免疫系统的弹性。因此,植物免疫剂在农药科学中非常重要。在本文中,我们回顾了植物免疫剂,例如Ningnanmycin,vanisulfane,Dufulin,cytosinpeptidemycin和寡糖蛋白,及其抗病毒毒作用机制,并讨论植物免疫剂的抗病毒应用和发育。植物免疫剂可以触发防御反应并赋予对植物的抗病性,并深入分析植物免疫剂在植物保护中的发育趋势和应用前景。
和α-连接的ʟ-鼠李糖部分。近年来,已开发出几种候选疫苗来通过将细胞壁多糖与合适的蛋白质结合来控制细菌感染,其中包括针对b型流感血友病(Hib) [12,13]、脑膜炎[14]、肺炎球菌感染[15,16]和肠道疾病如霍乱[17]、腹泻[18]和尿路感染[19]的疫苗。尽管可以通过发酵技术分离多糖,但是很难从天然来源中获得大量具有足够纯度的多糖片段。因此,开发化学合成策略对于获得具有足够纯度的所需数量寡糖片段非常重要。在这个方向上,本文介绍了使用顺序糖基化策略对对应于E. albertii O4菌株细胞壁O抗原多糖的五糖重复单元进行全合成(图1)。
摘要:微生物,发酵过程和由此产生的代谢产物是生物技术,尤其是食品生物技术的关键驱动力。最终制造食品的数量和/或质量与生产者微生物的代谢过程的效率直接相关。食品生物技术公司自然有兴趣提高其生物技术生产线的生产力。这可以通过间接或直接影响微生物细胞中发生的生物过程的基本机制来实现。本综述考虑了一种方法,可以通过使用几种类型的物质或复合物来提高生产者微生物的效率,从而影响食品生物技术(尤其是发酵牛奶产物)感兴趣的微生物生产的代谢过程。将对这些补充剂进行分类,具体取决于它们的化学性质(聚和寡糖;多聚肽和寡肽,个别氨基酸;其他有机化合物,其他有机化合物,矿物质以及多组分补充剂)以及其应用程序的评估结果。
摘要:由于其高能量和功率密度,锂离子电池(LIBS)已响应对有效储能解决方案的需求而获得了普及。电极体系结构在确定电池性能中的重要性突出了优化的需求。通过开发有用的有机聚合物,已经研究了环糊精体系结构,以提高基于LI的电池的性能。称为环糊精(CD)的大环寡糖具有相对疏水的腔,可以包围其他分子。在许多行业中发现了这种“寄宿与招待”关系有用。CD的氢键和合适的内腔直径已导致其作为锂离子扩散通道的选择。CD也已用作固态电池的固体电解质以及分离器和粘合剂,以确保电极组件之间的粘附。本评论提供了基于CD的材料以及它们在电池组件中的使用方式的一般概述,突出了它们的优势。
Access Microbiology 是一个开放的研究平台。预印本、同行评审报告和编辑决定可在本文的在线版本中找到。收到日期:2023 年 10 月 11 日;接受日期:2024 年 6 月 26 日;发布日期:2024 年 7 月 17 日作者隶属关系:1 美国陆军作战能力发展司令部化学生物中心,8908 Guard St. E3831,Gunpowder,MD 21010,美国;2 Excet Inc. 6225 Brandon Ave #360,Springfield,VA 22150,美国。*通信:Nathan D. McDonald,Nathan.d.mcdonald5.civ@army.mil 关键词:CRISPR-Cas9;基因组工程;脂质 A;脂多糖。缩写:KDO,3-脱氧-d-甘露-辛-2-乌洛索;LOS,脂寡糖;LPS,脂多糖;PAM,原间隔区相邻基序。本文的在线版本提供了两个补充图。000723.v3
本文讨论了乳糖酶在各种情况下的作用、可产生乳糖酶的微生物来源、乳糖酶发酵中使用的底物类型、有效的发酵策略以及乳糖酶的工业应用。细菌、酵母和真菌用于生产乳糖酶,乳糖酶是一种分解牛奶中乳糖的酶,本文探讨了稻草和橘皮等非常规底物,展示了它们在经济高效的酶生产中的潜力。本文解释了不同的发酵策略,包括深层发酵和固态发酵,强调了它们在最大化乳糖酶产量方面的有效性。纯化和提取技术对于提高酶的纯度和效率也很重要。乳糖酶用于各种工业应用,包括牛奶中的乳糖水解、半乳寡糖的产生以及乳糖不耐症的治疗。乳糖酶在食品和制药行业具有众多优势,固定化技术和基因工程的进步可以显著提高酶的生产效率。
志贺氏菌是全球中度至重度腹泻的主要原因,也是中低收入国家 5 岁以下儿童腹泻相关死亡的主要原因。针对志贺氏菌病的疫苗需求量很大。SF2a-TT15 是一种合成的碳水化合物结合疫苗,可对抗志贺氏菌 2a (SF2a),经证实对成年志愿者安全且具有强免疫原性。本文表明,10 µg 寡糖 (OS) 疫苗剂量的 SF2a-TT15 可在接种疫苗后 2 年和 3 年随访的大多数志愿者中诱导持续的免疫反应,且免疫反应强度和功能均保持良好。接种疫苗 3 个月后确定的任一体液参数的高水平以及特异性 IgG 记忆 B 细胞的数量是免疫反应持久性的良好预测指标。这项研究首次检验了志贺氏菌候选疫苗诱导的抗体功能和记忆 B 细胞反应的长期持久性。
组成脱水的凤尾鱼28%,土豆,马铃薯淀粉,马铃薯蛋白,油和脂肪(鱼油6%),全豌豆,矿物质,水解动物蛋白,藻类(Ascophyllum nodosum),曼南(Mannan)寡糖(MOS)0.2%,果酱 - 果糖(Froucto-Oligosacachiesd 0.079%,salvia officinalis 0.01%),干果挤压残留物(疫苗摩克彭蓬0.039%),丝兰schidigera。添加剂(每千克):维生素A 24500 UI,维生素E/全rac-alpha-丙泊酸酯406 mg,维生素B1 5 mg,维生素B2 13 mg,维生素B6 10.3 m6 10.3毫克胆碱氯化物2100 mg,牛磺酸1000毫克,DL-Methionine 700 mg,硫酸锌,一水合物192 mg(Zn 70 mg),铜(II)氨基酸水合物的螯合物56 mg(CU 14 mg)。风味和香气增强剂:天然产品(植物名称):Rosmarinus officinalis 29 mg。
几代人有很长的辩论:“蜂蜜是否比精制糖更好?什么是健康的选择”?从科学上讲,除了其已知的营养外,蜂蜜还表现出抗菌,抗炎和抗癌特性。现代研究强调了其益生元活性,心血管益处以及在管理糖尿病和促进伤口愈合中的作用。蜂蜜比精制糖的主要优点包括其较低的卡路里含量,较低的血糖影响以及许多长期的健康益处,使其成为许多饮食中精制糖的更健康替代品。蜂蜜和精制糖都由葡萄糖和果糖的组合组成,但存在一些差异。在精制糖(来自甜菜或甘蔗)中,葡萄糖和果糖被结合在一起形成蔗糖,在蜂蜜(约25种不同的寡糖)中,它们主要彼此独立。关于蜂蜜的消化率,蜂蜜与精制糖不同,因为蜜蜂添加了将蔗糖分为两种简单的糖,果糖和葡萄糖。这些糖直接被我们的身体吸收,并且更容易消化。
摘要:与常规治疗剂相比,寡核苷酸的潜力在治疗学上是特殊的,因为它们具有很高的安全性,效力和特异性。然而,许多障碍,例如体内稳定性较低和细胞摄取不良,都阻碍了它们的临床成功。使用聚合物载体可以是克服生物屏障的有效方法,从而最大程度地提高了寡核苷酸的治疗功效,这是由于高度可调的合成和各种聚合物的功能修饰。正如聚合物载体中加载的,诸如反义寡核苷酸,小型干扰RNA,microRONAS,甚至是信使RNA等疗法寡核苷酸,例如通过绕过肾脏过滤并可以有效地将其内化到疾病细胞中。在这篇综述中,我们引入了治疗性寡糖和合成聚合物之间的各种系统组合,包括使用高度功能化的聚合物来响应广泛的内源性和外源性刺激,以用于对寡核苷酸释放的临时控制。我们还提出了适合靶向治疗和免疫疗法的寡核苷酸的有趣特征,可以通过多功能聚合物载体完全支持。