开创性的研究表明,通过广泛调谐的神经元的大量人群的综合作用,而不是通过少量的高度调节神经元1来编码。几个系统为大脑功能中的“分布式编码”提供了进一步的证据2,3。然而,这种投资使用了反复试验的单个神经元的串行记录,因此无法以单次试验来证明对大脑信息编码的神经元种群。同时(平行)神经元种群记录的技术可以使用随机抽样的神经元种群对大脑中的信息进行出人意料的编码,尤其是在体感4-6和边缘系统中的7。,我们通过从慢性植入的电动机(MI)皮层(MI)皮层和腹侧(VL)Thalamus中的慢性植入电极阵列中记录来解决这些问题,以前肢移动任务进行训练的大鼠。我们问了三个问题。首先,在Mi Cortex和/或Vl Thala-Mus编码前肢运动轨迹中,神经元种群活性的线性或非线性数学转化如何?第二,这些“电机代码”是否可以用于生成在线“神经元群体功能”,以实时控制机器人手臂,以足够的精度代替受过训练的运动任务中的动物前肢运动?第三,可以以这种神经生物的模式训练(奖励神经活动本身)会改变或消除先前条件的运动?
1.2 Defiligessitions: ............................................................................................................................................1.2 Defiligessitions: ............................................................................................................................................
朝着协作机器人或配件的趋势继续增长。这些机器人旨在与人类一起工作,从而提高各种行业的效率和灵活性。配角配备了安全功能,使它们可以安全地与人类工人紧密相邻。机器人臂越来越多地与先进的传感技术(包括视觉系统,力/扭矩传感器和其他反馈机制)整合在一起。这增强了他们感知和适应环境的能力,使它们更具通用性并能够处理复杂的任务。机器人臂中人工智能(AI)和机器学习(ML)的整合是一个明显的趋势。这使机器人可以从经验中学习,优化其性能并适应不断变化的条件。AI也可以用于预测性维护,提高机器人系统的整体可靠性。具有模块化设计的机器人臂变得越来越流行。模块化允许更轻松的自定义,重新配置和可扩展性,使其适应各种应用程序和行业。在武器末端工具中有连续的发展,包括握把,传感器和其他专业附件。这些创新旨在提高机器人武器对不同任务和行业的多功能性。正在努力使包括中小型企业(中小型企业(SME)在内的更广泛的用户更广泛地使用机器人武器。这涉及创建用户友好的接口,简化的编程方法和负担得起的解决方案。机器人武器越来越多地在电子商务和物流中用于订单实现,分类和包装等任务。这些行业对自动化的需求正在推动机器人解决方案的采用。除了工业应用外,在医疗保健环境中使用机器人臂的趋势越来越大。这包括机器人协助的手术,康复和为有行动不便的人提供的援助。在3D打印应用中使用机器人臂,允许精确和受控的添加剂制造工艺。对节能机器人系统的关注正在上升。这包括使用轻质材料,节能组件以及优化能源消耗的编程策略。
图2。实验循环的代谢成本。(a)循环到达的循环范围是在水平平面上进行比较和对称进行的,主要是在肩膀上。将假设的力率成本与工作成本隔离,运动的变化以产生固定的机械功率,通过随着运动频率的增加而减少振幅。(b)运动数据包括通过过期的气体呼吸测定法的肩角,机械能力,肌电图(EMG)和(未显示)代谢能量消耗。
简介 多臂老虎机 (MAB) 模型是强化学习中最基本的设置之一。这个简单的场景捕捉到了诸如探索和利用之间的权衡等关键问题。此外,它还广泛应用于运筹学、机制设计和统计学等领域。多臂老虎机的一个基本挑战是最佳臂识别问题,其目标是有效地识别出具有最大预期回报的臂。这个问题抓住了实际情况中的一个常见困难,即以单位成本只能获得有关感兴趣系统的部分信息。一个现实世界的例子是推荐系统,其目标是找到对用户有吸引力的商品。对于每个推荐,只会获得对推荐商品的反馈。在机器学习的背景下,最佳臂识别可以被视为主动学习的高级抽象和核心组件,其目标是尽量减少底层概念的不确定性,并且每个步骤仅显示被查询的数据点的标签。量子计算是一种有前途的技术,可能应用于密码分析、优化和量子物理模拟等不同领域。最近,量子计算设备已被证明在特定方面的表现优于传统计算机
具有挑战性。这里的建议是寻找一个预先集成和预验证的ROS2捆绑包,其中还包含有用的软件包,例如MoveIt进行运动计划。Advantech建议选择主机控制器,这些主机控制器支持CODESYS,以减少开发工作。无论选择哪种操作系统(即Linux,Ubuntu或Windows),这可以实时控制机器人武器。对于将来的服务机器人应用程序,需要将AI(人工智能)例程集成到运动控制软件之上。ABB机器人部总裁Marc Segura表示,AI正在增强机器人的抓地力,选择和地点的能力。对于服务机器人来说也是如此。Advantech为工业机器人提供支持Canopen和CIA 402的ROS2软件套件,也可以用于服务机器人。
摘要——消费者和研究人员缺乏一种易于使用、可靠且经济高效的方法来准确评估身体活动和能量消耗,这是成功控制体重的关键因素。BodyMedia 通过开发 SenseWear 臂带满足了这一需求,该臂带利用 2 轴加速度计、热通量传感器、皮肤电反应传感器、皮肤温度传感器和近体环境温度传感器来收集数据,从而计算能量消耗。本文概述了相关研究,这些研究展示了 SenseWear 臂带如何提供非常低的能量消耗错误率,相对于更昂贵、限制更多且难以使用的设备,以及它如何是一种经济高效且简单的解决方案,可在实验室外应用以跟踪和探索能量消耗。索引术语——SenseWear 臂带、能量平衡、传感器阵列、能量消耗、TEE、AEE、REE、消耗评估身体活动评估、情境检测、自由生活环境、准确性和可靠性、可穿戴计算机。简介 增加身体活动量以及实现和维持能量平衡已成为 21 世纪重要的个人健康目标。卫生专业人员深知,许多主要的健康问题都是由缺乏身体活动以及摄入的热量多于消耗的热量而引起或加剧的。肥胖症流行及其相关问题,包括高血压、II 型糖尿病、冠状动脉疾病、关节炎和慢性背痛,都证明了久坐的生活方式和超重会导致生活质量低下,在许多情况下还会导致过早死亡。虽然卫生专业人员以及有体重问题的个人都承认需要改善和维持他们的锻炼和饮食行为,但他们缺乏准确测量能量消耗所需的工具,而能量消耗是确定一个人消耗的能量是否多于摄入能量的重要身体测量指标。为了减肥,一个人首先必须能够准确量化活动量和能量消耗。只有这样,他们才能开始对日常生活进行必要的适当改变,以帮助他们提高活动量和调整卡路里摄入量。到目前为止,还没有一种易于使用、可靠且准确的方法可以在实验室环境之外定期评估身体活动量和能量消耗。这对体重有重大影响
REACHY 2是一种高度模块化的开源人类人体机器人,专为研究和教育而设计。它结合了高级视觉,音频和执行器系统,用于尖端的AI相互作用和远程操作。
多臂老虎机 (MAB) 问题模拟了一个决策者,该决策者根据当前和获得的新知识优化其行动以最大化其回报。这种类型的在线决策在脑机接口 (BCI) 的许多程序中都很突出,MAB 以前曾用于研究,例如,使用哪些心理命令来优化 BCI 性能。然而,BCI 背景下的 MAB 优化仍然相对未被探索,即使它有可能在校准和实时实施期间提高 BCI 性能。因此,本综述旨在向 BCI 社区进一步介绍 MAB 的成果丰硕的领域。本综述包括 MAB 问题和标准解决方法的背景,以及与 BCI 系统相关的解释。此外,它还包括 BCI 中 MAB 的最新概念和对未来研究的建议。
在各种自动化行业中,无线活动是必需的,特别是在危险或危险区域的偏远地区。在许多行业中,需要处理一些非常热的工作,而人手无法做到,在这种情况下,无线操作效率更高。该项目专注于使用微控制器在 X-bee 和无线传感器网络的帮助下设计手势控制的机械臂。它由两部分组成,通过无线传感器通信系统相互连接。X-bee 将充当发射器和接收器设备系统。主要部分由装有锂离子电池、微控制器和柔性传感器的手套组成。第二部分由电机、微控制器和机器人手指组成,机械动作通过它们发生。