Nielsen-Ninomiya 定理是高能和凝聚态物理中关于手性费米子在静态晶格系统中实现的基本定理。本文我们扩展了动态系统中的定理,其中包括静态极限中的原始 Nielsen-Ninomiya 定理。原始定理对于块体手性费米子来说是行不通的,而新定理由于动态系统固有的块拓扑而允许它们实现。该定理基于对偶性,可以统一处理周期性驱动系统和非厄米系统。我们还给出了受对称性保护的非手性无间隙费米子的扩展定理。最后,作为我们的定理和对偶性的应用,我们预测了一种新型的手性磁效应——非厄米手性磁肤效应。
摘要:精确科学中存在一种基本的子集-分区对偶性。更具体地说,它是子集元素与分区区别之间的对偶性。从更抽象的角度来看,它是范畴论的反向箭头,为数学提供了重要的结构。本文首先发展了子集的布尔逻辑与分区逻辑之间的对偶性。然后,概率论和信息论(基于逻辑熵)被证明是从子集和分区的定量版本开始的。集合类别中的一些基本通用映射属性被开发出来,这些属性先于范畴论的抽象对偶性。但迄今为止,主要应用是阐明和解释量子力学。由于经典力学说明了完全不同的布尔世界观,因此量子力学自然会基于其特征叠加态的不确定性,这在集合级别上由分区(或等价关系)建模。这种解释量子力学的方法不是对量子力学的临时或临时的尝试,而是精确科学中基本对偶性的自然应用。
最近提出的 2 + 1 维非阿贝尔玻色子-费米子对偶在道义上将 U ( k ) N 与 SU ( N ) − k 陈-西蒙斯物质理论联系起来,为探索从阿贝尔复合粒子理论可获得的非阿贝尔量子霍尔态前景提供了一个新平台。在这里,我们重点研究将玻色子或费米子的阿贝尔量子霍尔态理论与部分填充朗道能级的非阿贝尔“复合费米子”理论联系起来的对偶。我们表明,这些对偶预测了特殊的填充分数,其中阿贝尔和非阿贝尔复合费米子理论似乎都能够承载不同的拓扑有序基态,一个是阿贝尔态,另一个是非阿贝尔态,即 U ( k ) 2 Blok-Wen 态。我们认为,这些结果并不与对偶性相冲突,而是表明了意想不到的动力学,其中红外和最低朗道能级极限无法跨对偶性交换。在这种情况下,非阿贝尔拓扑序可能会不稳定,有利于阿贝尔基态,这表明阿贝尔态和非阿贝尔态之间存在相变,该相变很可能是一级相变。我们还将这些构造推广到其他非阿贝尔费米子-费米子对偶性,在此过程中利用对偶性获得了各种成对复合费米子相的新推导,包括反普法夫态。最后,我们描述了在多层结构中,跨 N 层的复合费米子的激子配对如何也能生成具有 U (k)2 拓扑序的 Blok-Wen 态家族。
在本次演讲中,我将解释流形 M 的德拉姆上同调与同一空间上的紧支撑上同调之间的对偶性。这种现象被称为“庞加莱对偶”,它描述了微分拓扑中的一种普遍现象,即流形上封闭的、精确可微形式空间与其紧支撑对应物之间的对偶性。为了定义和证明这种对偶性,我将从向量空间对偶空间的简单定义开始,再到向量空间上正定内积的定义,然后定义流形的概念。我将继续定义可微流形上的微分形式及其相应的空间,这些对于此分析是必要的。然后,我将介绍流形的良好覆盖、有限型流形和方向的概念,这些都是定义和证明庞加莱对偶所必需的概念。我将以 M 可定向且承认有限好覆盖的情况下的庞加莱对偶的证明作为结束,并举例说明。
○ 对偶性和极小极大定理;凸优化 ○ 最大流/最小割 ● 下界技术和问题简化 ● NP 完全性 ● 近似算法 ● 从在线学习、交互式证明、大图/社交网络上的算法、并行/高性能计算、量子计算中选择的主题。
我们研究了基于映射到大 n 极限下的 n 量子比特中心自旋模型 (CSM) 的非线性量子比特演化模型,其中平均场理论是精确的。扩展了 Erdös 和 Schlein 的定理 [ J. Stat. Phys. 134, 859 (2009) ],我们建立起当 n →∞ 时,CSM 与非线性量子比特严格对偶。对偶性支持在诸如凝聚态之类的系统中进行一种非线性量子计算,其中大量辅助粒子对称地耦合到中心量子比特。它还支持具有严格误差界限的非线性量子模拟的门模型实现。该模型的两种变体(有和没有辅助粒子耦合)映射到具有不同非线性和对称性的有效模型。在没有耦合的情况下,CSM 模拟初始条件非线性,其中哈密顿量是 tr( ρ 0 σ x ) σ x 、tr( ρ 0 σ y ) σ y 和 tr( ρ 0 σ z ) σ z 的线性组合,其中 σ x 、σ y 和 σ z 是泡利矩阵,ρ 0 是初始密度矩阵。通过对称辅助耦合,它模拟 tr( ρσ x ) σ x 、tr( ρσ y ) σ y 和 tr( ρσ z ) σ z 的线性组合,其中 ρ 是当前状态。这种情况可以模拟量子比特扭转,Abrams 和 Lloyd [ Phys. Rev. Lett. 81, 3992 (1998) ] 已证明这可以在理想设置中使状态鉴别的速度呈指数级加速。从量子基础的角度来看,这里讨论的对偶性也可能很有趣。长期以来,人们一直对量子力学是否可能具有某种类型的小的未观察到的非线性感兴趣。如果不是,那么禁止它的原理是什么?对偶性意味着根据线性和非线性量子力学演化的宇宙之间没有明显的区别:在大爆炸时以纯状态 | ϕ ⟩ 准备的单量子比特宇宙,与以相同状态准备的辅助粒子对称耦合,只要有指数级数量的辅助粒子 n ≫ exp[ O ( t )],似乎就会在任何有限时间 t > 0 内非线性演化。
AdS/CFT 对应关系是一本词典,将 ð d + 1 Þ 维反德西特时空体引力理论 (AdS) 与 ad 维边界共形场论 (CFT) 联系起来。这种对应关系是部分构建的理论 (AdS 引力) 与当前具有完整数学结构的理论 (CFT) 之间对偶性的一个例子。1 因此,它作为通向量子引力理论的一种手段,或者至少是通向广义相对论和量子场论之间调和的一种手段,具有重要意义。物理哲学家在分析这种对偶性的意义时并没有懈怠;特别是它如何接受现实主义的解释(Le Bihan & Read, 2018),以及如何从涌现的角度理解体理论和边界理论之间的关系(De Haro, 2017;De Haro, Mayerson, & Butter field, 2016;Dieks, van Dongen, & de Haro, 2015;Rickles, 2013;Teh, 2013;Vistarini, 2017)。最近,一项将 AdS/CFT 对应解释为擦除保护量子纠错码 (QECC) 的提议引起了人们的兴趣(Almheiri, Dong, & Harlow, 2015;Pastawski, Yoshida, Harlow, & Preskill, 2015;Harlow, 2018;Wolchover, 2019)。擦除保护 QECC 是一种将信息编码在多量子比特希尔伯特空间子空间元素中的程序,这样就可以检测和纠正因擦除而导致的错误。2 该提案引发了“时空是 QECC”的非正式主张(Preskill,2017 年;Wolchover,2019 年)。
1 简介 {sec:intro} 经典双重复制的最直接表述 [ 1 ] 是将杨-米尔斯理论阿贝尔部分的经典解和双伴生标量理论的经典解映射到广义相对论的经典解。引力解表示为规范理论解的两个副本,因此得名“双重复制”。相反,规范解通常被称为引力解的“单一副本”,而标量解被称为“第零个副本”。这种双重复制程序的基础在于规范和引力振幅之间的颜色运动学对偶性(有关最新评论,请参阅 [ 2 – 4 ])。自从最初为 Kerr-Schild 时空提出双重复制公式 [ 1 ] 以来,经典双重复制关系的其他几个例子