在半导体和高级材料行业中需要使用非接触式和非毁灭性工具,以表征散装,薄膜和2D材料的电气性能。
视觉 - 语言变压器(VLT)最近显示出巨大的成功,但同时伴随着大量的计算成本,其中主要原因可以归因于大量的视觉和语言令牌。存在用于压缩VLTS的令牌修剪研究主要遵循基于单模式的方案,但忽略了对齐不同模态来指导令牌修剪过程的关键作用,从而导致重要的代币在另一个模态分支中错误地修剪一个模态。同时,现有的VLT修剪作品也缺乏基于不同输入样本动态压缩每一层的灵活性。为此,我们提出了一个名为M Ultodal的新颖框架,用于加速变化VLT的木质制成d ynamic t ynamic t oken p Runing(MADTP)。具体来说,我们首先引入了精心设计的多模式对齐指导(MAG)模块,该模块可以使相同语义概念的特征与不同的模式相结合,以确保修剪的代币对所有模式都不太重要。我们进一步设计了一种新型的dy-namic令牌修剪(DTP)模块,该模块可以根据不同的输入实例自适应地调节每个层中的令牌压缩比。对各种基准测试的广泛实验表明,MADTP可以显着确定多种模型的计算复杂性,同时保留竞争性能。值得注意的是,当将MADTP应用于NLVR2数据集中的BLIP模型时,可以将GFLOPS降低80%,而性能降低少于4%。该代码可在https://github.com/double125/madtp上找到。
摘要 在胸部 X 光 (CXR) 诊断领域,现有研究通常仅侧重于确定放射科医生的注视点,通常是通过检测、分割或分类等任务。然而,这些方法通常被设计为黑盒模型,缺乏可解释性。在本文中,我们介绍了可解释人工智能 (I-AI),这是一种新颖的统一可控可解释流程,用于解码放射科医生在 CXR 诊断中的高度关注度。我们的 I-AI 解决了三个关键问题:放射科医生注视的位置、他们在特定区域关注的时间以及他们诊断出的发现。通过捕捉放射科医生凝视的强度,我们提供了一个统一的解决方案,可深入了解放射学解释背后的认知过程。与当前依赖黑盒机器学习模型的方法不同,这些方法在诊断过程中很容易从整个输入图像中提取错误信息,而我们通过有效地屏蔽不相关的信息来解决这个问题。我们提出的 I-AI 利用视觉语言模型,可以精确控制解释过程,同时确保排除不相关的特征。为了训练我们的 I-AI 模型,我们利用眼球注视数据集来提取解剖注视信息并生成地面真实热图。通过大量实验,我们证明了我们方法的有效性。我们展示了旨在模仿放射科医生注意力的注意力热图,它编码了充分和相关的信息,仅使用 CXR 的一部分即可实现准确的分类任务。代码、检查点和数据位于 https://github.com/UARK-AICV/IAI。1. 简介
摘要:可以通过扭曲角度精确控制的空间变化带对齐和电子和孔定位的Moiré杂波,已经成为研究复杂量子现象的令人兴奋的平台。虽然大多数过渡金属二甲化元素(TMD)的异质分子具有II型带对齐,但引入I型带比对可以实现更强的轻度耦合和增强的辐射发射。在这里,我们通过第一原则GW和贝尔特萨蛋白方程(GW-BSE)的计算以及时间和角度解决的光发射光谱(TR-ARPES)测量的结合,与先前的理解相反,与先前的理解相反,MOSE 2 /WS 2杂波在大型型号和类型IS型构建型和同样的区域均与II的类型II型构建型和相似的区域相反。在不同的高对称区域中以小扭曲角度重建。在Tr-arpes中与我们的计算一致,仅在摩西2中观察到长寿命的电子种群,对于具有较大扭曲角的样品,而在具有小扭曲角的样品中,观察到来自两个不同长寿命的激子的信号。此外,尽管这两层的传导带几乎是堕落的,但仍未发生激发杂交,这表明先前观察到的这种材料中的吸收峰来自晶格的重建。我们的发现阐明了Mose 2 /ws 2异质结构中的复杂能量景观,其中I型和II型带对齐的共存为Moiré-Tonable可调光电设备打开了带有内在的侧面异质结的门。
哈里亚纳邦,印度摘要 - 牙科领域的形状记忆聚合物的出现,在很大程度上简化了工作。在诸如Archwires和Arigners(Archwires and Aligners)等各种正畸应用中的用法也已被证明至关重要。已知的合金,例如氧化锆和智能 - 密集是形状记忆材料的示例,在牙科中表现出智能行为。随着材料科学开发和应用这些智能材料的趋势的日益增加,这些材料可能会允许开创性的牙科疗法,并具有显着增强的治疗临床结果。可以将对准器的历史记录追踪回凯斯林,凯斯林(Kesling)描述了牙齿最终的牙齿定位器以及1945年的有效固定装置,然后是1964年的Nahoum2,开发了真空塑料的“牙齿轮廓”设备,这些设备是热塑性的,最适合牙齿使用。他开发了使用连续电器的概念,并进行了较小的增量变化,重大更正驾驶室是基于流行的Essix设备和Invisalign的构建而形成的。本文的目的是回顾形状记忆对准器的历史以及经过验证的研究,以及它将在正畸领域应用。本文还通过库存中的智能材料代替常规材料来讨论患者以及牙医的潜在好处。索引项 - 对准器,形状内存,CAT,SMP。
多模式大型语言模型(MLLM)在视觉教学调整中取得了显着的成功,但由于大型语言模型(LLM)骨干的自动回归解码,它们的推论既耗时又耗时。传统的加速推理方法,包括模型压缩和从语言模型加速的迁移,通常会损害输出质量或有效整合多模式特征的face Challenges。为了解决这些问题,我们提出了AASD,这是一个新型的框架,用于加速使用精制的KV缓存并在MLLM中对准投机解码。我们的方法利用目标模型的缓存键值(KV)对提取生成草稿令牌的重要信息,从而有效地投机解码。为了减少与长多模式令牌序列相关的计算负担,我们会引入KV投影仪,以压缩KV缓存,同时保持代表性保真度。此外,我们设计了一种目标放射线注意机制,以优化草稿和目标模型之间的对齐方式,从而以最小的计算开销来实现真实推理情景的好处。主流MLLM的广泛实验表明,我们的方法在不牺牲准确性的情况下达到了2倍推理的速度。这项研究不仅为加速MLLM推断提供了有效且轻巧的解决方案,而且还引入了一种新颖的对齐策略,用于在多模式背景下进行投机解码,从而为未来的有效MLLM研究奠定了强大的基础。代码可在https://anonymon.4open.science/r/asd-f571上使用。
这些对话发现了雇主之间关注的关键领域,包括耐用和技术技能的差距,缺乏基于工作的学习机会以及改善工业和高等教育之间伙伴关系的领域。这些发现为随后的调查的设计提供了信息,以更深入地探索这些主题。在调查后,对对后续讨论表示兴趣的特定调查受访者进行了第二轮访谈。这些访谈遵循了与最初的访谈的类似方法,该方法使用了针对受访者的专业知识量身定制的结构化但灵活的指南。但是,与第一轮不同,重点是扩大,背景和验证调查的定量发现,而不是发现新的领域要探索。这种两相访谈的方法确保了对雇主的观点的全面理解,同时还完善了所收集的见解。
人类反馈是大语言模型(LLMS)的一致性的核心。但是,关于方法,域(Who),人(WHO)和目标(到什么目的)的方法(如何),反馈过程的开放问题仍然存在。为了浏览这些问题,我们介绍了P rism,该数据集绘制了来自75个国家 /地区的1,500名不同参与者的偏好,并在8,011个现场对话中以21 llms的方式表示偏好。使用P RISM,我们贡献了(i)更广泛的地理和人口参与反馈; (ii)两个国家的人口普查代表样本(美国,美国); (iii)与详细参与者概况相关的个性化评级,允许样本人工制品的个性和归因。我们针对具有价值和有争议的问题的主观和多元文化观点,我们期望人际关系和跨文化分歧。我们在三个案例研究中使用P RISM来证明需要仔细考虑人类提供哪些对齐数据的需要。
印度饮食中使用的液体 - 一项体外比较研究Akash Goel 1,Sunanda Roychoudhury 2,Kumar Amit 3 1毕业生,2毕业生,2教授兼系主任,3副教授,正畸和牙齿牙齿牙齿矫正术系副教授对于正畸治疗,在过去的几十年中,呈指数增长。清晰的对准器的美学吸引力对于正畸治疗中的患者满意度至关重要。但是,由于印度饮食中的肉欲消耗,这些对齐器偶尔会染色,要求对其颜色稳定性进行分析。因此,这项研究评估了受印度普通饮食液体和人造唾液的颜色稳定性。目标与目标:比较浸入茶,咖啡,橙汁,基于姜黄和人造唾液的溶液中时两种不同对齐材料的颜色稳定性。方法:将两种比对材料浸入延期液体的持续时间为两周。颜色变化是在暴露前后使用分光光度计进行定量的。使用双变量分析进行数据分析,并使用独立的t检验和配对的t检验进行评估颜色稳定性的显着差异。结果:我们的结果表明,在受到橙汁,茶和咖啡之类的染色剂后,PU对准器的颜色变化明显大于PET-G对准器。这些结果强调需要进一步研究长期影响和减轻变色的策略。两周后,PET-G更加受姜黄水的影响,而PU对准器非常容易受到咖啡污渍的影响。结论:材料选择在正畸中至关重要,因为饮食习惯会影响对准器的寿命和美学。关键字:对齐材料,颜色稳定性,饮食液体,正畸,变色