摘要背景:急性肺损伤及其并发症急性呼吸窘迫综合征是严重的临床疾病,但治疗方法有限。其中,干细胞似乎是一种很有前途的替代疗法。在本研究中,我们首次研究并比较了骨髓干细胞 (BMSCs) 及其外泌体对油酸诱导的大鼠肺损伤的影响。方法:我们通过静脉注射油酸 (60 mg/kg) 来诱导急性肺损伤;此后,我们在注射油酸两小时后将大鼠 BMSCs (1 x 10 6 ) 和外泌体 (通过市售试剂盒从 1 x 10 6 BMSCs 中获得) 静脉注射到尾静脉。24 小时后,通过深度麻醉处死大鼠,获取肺组织。使用苏木精-伊红染色的样本检查,评估出血、白细胞浸润、水肿和增生等参数。流式细胞仪验证了从干细胞培养基中获得的外泌体。结果:肺损伤后注射干细胞和外泌体组分可恢复所有参数;然而,骨髓间充质干细胞的再生能力优于其外泌体组分(p = 0.004)。结论:干细胞及其外泌体组分可被视为治疗大鼠油酸诱导性肺损伤的替代疗法,其母体来源比外泌体更有效;干细胞似乎更有效。HIPPOKRATIA 2024, 28 (3):100-108。
本研究任务的上下文背景是越来越多的挑战,限制了人权捍卫者(HRD)在数字时代运作的空间。数字技术的出现为许多人力资源管理提供了一个新的领域来组织和开展其活动。但是,这些新机会还以例如数字监视和在线骚扰,这些数字威胁通常与物理攻击相互链接。这些挑战是数字民主计划(DDI)的总体重点,这项研究任务是其中的一部分。全球关注是由丹麦,挪威和欧盟资助的这项倡议中的民间社会合作伙伴之一。该计划的总体目标是在2023 - 2026年促进和保护数字时代的当地包容性民主空间,并拥有以下两个关键结果:
大蒜是一种重要的香料作物,用于调味食品,并且在传统医学中有悠久的使用历史。然而,黑霉菌是一种常见的真菌疾病,影响大蒜,这是由曲霉感染引起的。这种疾病显着影响大蒜的产生和质量。因此,本研究旨在评估新型绿色合成氧化锌纳米颗粒(ZnO-NP)对大蒜中黑色霉菌疾病的抗真菌活性。使用环保绿色合成技术用于使用耐锌细菌serratia sp。产生ZnO-NP。(ZTB24)。在本研究中,实验分析。UV-VIS光谱在380 nm处,透射电子显微镜(TEM),动态光散射(DLS)和ZETA电势证实了Serratia sp的绿色ZnO-NP的成功生物合成。中毒的食物技术和孢子发芽测试揭示了ZnO-NPS在体外条件下对尼日尔的抗真菌活性。通过从感染的大蒜鳞茎中分离出引起疾病的尼日尔真菌的存在,并使用转录序列(ITS)rDNA测序在分子水平上进一步鉴定出来。ZnO-NPS在250μgml-1浓度的ZnO-NP下,菌丝体的生长降至90%,孢子发芽为73%。在大蒜的最终治疗中,在不同浓度(50、100、250和500 ppm)的体内进一步使用了ZnO-NP。在7天和14天后评估了疾病严重程度的百分比,在接种前方法中,500 ppm的ZnO-NP的应用表现出0%的疾病严重程度,而与对照组相比,在接种后14天后,在7天和14天后,黑霉病疾病的疾病严重程度记录为1.10%和0.90%。因此,使用绿色技术合成的ZnO-NP的抗真菌活性为开发天然杀菌剂的开发铺平了道路,为传统化学控制方法提供了可持续可再生的替代方案。
2。方法2.1。研究设计和设置使用Consores软件(一种用于监视法国公共卫生机构提供的AMC和AMR数据的工具),在2014年1月至2019年12月之间进行了法国教学医院的回顾性生态研究。Nimes University医院有1773张病床,包括46张病床,有24张床,用于血液学,235张手术,长期为190。在研究期间,每年接受41 300至50 100个住院患者,住院时间为55 200天/月,每年增加到2019年的57 500天/月。2.2。细菌样品分析了研究期间收集的大肠杆菌阳性的所有微生物样品。从门诊病人获得的样本,或在急诊室或在入院48小时内收集的样本,除非患者
1血液学系,法国雷恩·雷恩斯(Chu de Rennes); 2法国雷恩斯的弗朗萨斯·杜·桑·布雷塔尼(Françaisdu Sang Bretagne); 3血液学部门,楚里昂·苏德(Chu Lyon Sud),皮埃尔·B·恩特(Pierre B´Enite),法国里昂(Lyon); 4法国蒙彼利埃的Chu de Montpellier血液学系; 5血液学系Chu de Nantes,法国南特; 6法国里尔大学血液学Chu de Lille系; 7法国Cr´Eteil的Chu Henri Mondor淋巴病恶性肿瘤血液学系; 8法国波尔多的Bordeaux血液学和细胞治疗部; 9法国图卢兹丘罗斯大学的血液学和内科系,癌 - 障碍癌大学; 10 Clermont-Ferrand,Clermont-Ferrand,法国Chu de Clermont-Ferrand的血液学和细胞治疗部; 11血液学系Chru Nancy,Biopole de l'大学。 12血液学系,法国巴黎索邦大学的Saint-Antoine医院; 13法国第简的杜正孔伯戈涅血液学和INSERM 1231; 14血液学部门,HO
Amoroso , N.、la Rocca , M.、Bellantuono , L.、Deacono , D.、Fanizzi , A.、Lella , E.、Lombardi , A.、Maggipinto , T.、Monaco , A.、Tangaro , S. 和 Bellotti , R. (2019)。深度学习和多重网络用于精确模拟大脑年龄。衰老神经科学前沿,11,1 – 12。Bashyam,VM,Erus,J.,Doshi,M.,Nasrallah,M.,Truelove-Hill,M.,Srinivasan,D.,Mamourian,L.,Pomponio,R.,Fan,Y.,Launer,LJ,Masters,CL,Maruff,P.,Zhuo,C.,。Völzke,H.,Johnson,SC,Fripp,J.,Koutsouleris,N.,Satterthwaite,TD,...... Davatzikos,C.(2020 年)。基于深度脑网络和全球 14,468 名个体的生命周期脑年龄和疾病的 MRI 特征。 Brain,143,2312–2324。Brown,TT,Kuperman,JM,Chung,Y,Erhart,M,McCabe,C,Hagler,DJ,Jr,Venkatraman,VK,Akshoomoff,N,Amaral,DG,Bloss,CS,Casey,BJ,Chang,L,Ernst,TM,Frazier,JA,Gruen,JR,Kaufmann,WE,Kenet,T.,Kennedy,DN,Murray,SS,... Dale,AM(2012 年)。生物成熟度的神经解剖学评估。当代生物学, 22, 1693 – 1698。Butler, ER、Chen, A.、Ramadan, R.、le, TT、Ruparel, K.、Moore, TM、Satterthwaite, TD、Zhang, F.、Shou, H.、Gur, RC、Nichols, TE 和 Shinohara, RT (2021)。大脑年龄分析中的缺陷。人脑映射,42,4092 – 4101。http://dx.doi.org/10.1037/0033-2909.101.1.13 Casaletto, K. B., Umlauf, A., Beaumont, J., Gershon, R., Slotkin, J., Akshoomoff, N., & Heaton, R. (2015)。针对 NIH 工具箱认知电池英文版的人口统计学校正规范标准。国际神经心理学会杂志, 21, 378 – 391。Chen, C.-L.、Hsu, YC、Yang, LY、Tung, YH、Luo, WB、Liu, CM、Hwang, TJ、Hwu, HG 和 Isaac Tseng, WY (2020)。通过迁移学习对基于扩散磁共振成像的大脑年龄预测模型进行推广。神经影像,217,116831。
揭示了G和C-S-H之间仅有范德华力,界面键合强度很弱,并且脱键性能很低。石墨烯的脱根能量随着界面水含量的增加而降低,表明水侵入会削弱G和C-S-H的结合效应,并减少石墨烯对C-S-H底物的难度。在纳米级湿度的影响下探索石墨烯对CSH的粘附行为对于理解基本的粘附机制,优化复合材料证明和促进相关学科的发展至关重要。
磁共振成像 (MRI) 是一种多功能医学成像方式,可在软组织之间提供出色的对比度。可以调整采集参数,以使这种对比度对各种组织特性敏感,例如质子密度以及纵向和横向弛豫时间(分别为 T 1 和 T 2 )。MRI 采集包括使用各种电磁脉冲反复激发人体内质子,并从图像中获取少量傅里叶样本。然后通过逆傅里叶变换运算将频域中的观测值重铸到空间域。典型的 MRI 数据包括任意方向的 2D 或 3D 图像。后者具有两个平面内空间维度和切片方向的第三个空间维度,因此它们可以看作张量。然而,MRI 的采集时间相对较慢,通常需要几分钟的时间。这种技术限制会阻碍 3D 高分辨率图像的采集。为了避免这个缺点,超分辨率技术已被证明在许多情况下是有效的 [1],[2],[3]。它们包括从一个或多个低分辨率观测中恢复 3D 高分辨率图像。最近,有人提出使用深度学习从单个低分辨率观测中恢复高分辨率图像 [4],[5]。然而,对于小病变,最好考虑多个观测以用于图像的诊断。这些观测可以合并到融合模型中,从而提供比单独处理更多的信息 [6]。使用融合范式避免了依赖外部患者数据库来获取先验信息。因此,在剩下的文章中,我们将重点关注从多个观测中进行超分辨率重建的问题,也称为多帧超分辨率。
依赖温度的生物生产力控制硅酸盐风化,从而扩展了地球的潜在宜居时间。模型和理论考虑表明,地球样系外行星上的失控温室通常伴随着大气中的H 2 O和CO 2的急剧增加,这可能会随着即将到来的空间望远镜的生成而观察到。如果活性生物圈与地球类似地扩展了外部行星的可居住时间潘,则观察可居住区内边缘附近的系外行星的大气光谱可以使人深入了解地球是否居住。在这里,我们为地球状停滞的行星探索了这个想法。我们发现,尽管地幔减少,但表面生物圈将行星的可居住时间延伸约1 Gyr,对于更多的氧化条件,生物学上增强的风化速率越来越多,通过将CO 2的CO 2的供应率提高到大气中。从观察上,在宜居区的内边缘附近的大气CO 2中所产生的差异在具有活跃风化的生物行星和经历了失控的温室的生物行星之间可以区分。在有效的水文循环中,提高的生物生产力也导致JWST可观察到的CH 4生物签名。随着行星无法居住,H 2 O红外吸收带占主导地位,但是4.3- µm CO 2带仍然是CO 2丰度的清晰窗口。总而言之,虽然生命对碳酸盐 - 硅酸盐循环的作用在类似地球的停滞范围的大气谱中留下了记录,但尤其需要未来的工作才能确定构造状态和外部球星的组成,并推动下一代空间望远镜的发展。
b“ Quralis正在应用精确医学来推进新型的治疗管道,用于治疗肌萎缩性侧面硬化症ALS,额颞痴呆ftd和其他神经退行性疾病。我们的干细胞技术可以测试各种疗法的功效,并为诊所提供过渡桥,从而实现目标验证,发现和分子选择。我们正在推进三个反义和小分子计划,以解决大多数患者的ALS的子形式。与世界一流的思想领导者,药物开发人员和患者倡导者一起,我们的成长团队处于神经退行性研究和开发的领先地位。我们很荣幸能在新英格兰的创业生态系统中赢得了凶猛的15和新英格兰风险投资协会的最佳新兴生命科学公司Nevy奖。我们是神经退行性疾病生物学,干细胞和反义寡核苷酸ASO技术,生物标志物和小分子设计的先驱。我们对我们的患者社区,科学,同事和我们自己诚实和同情,分享了一种共同的热情,以紧急发现ALS和FTD的新药物。我们代表了各种背景和价值协作。我们认为,可以通过精确靶向正确的患者,确定正确的疾病机制,并精心开发疾病改良的临床有意义的疗法来改善患者生活,从而实现治疗神经退行性疾病的成功。QULARIS的立场摘要正在寻求一位积极进取的副科学家来领导和管理我们的复合管理系统。该职位将与团队成员紧密合作,以学习到适当的跟踪和组织决策实验中使用的化合物。主要职责”