带状疱疹是由Varicella-Zoster病毒(VZV)引起的疱疹疾病,该病毒是引起水痘的相同病毒(Wilson&Wilson,2021年)。这种疾病发生在患有水痘感染的患者中,这种病毒自从感染以来已经在脊髓附近的神经淋巴结中处于休眠状态时再次发挥活性。这种重新激活通常是由于压力性的生活方式,疾病和疾病会削弱免疫系统,或者仅仅是衰老对人体防御机制的自然作用。当病毒再次活跃时,它会沿着神经途径行进,并表现为皮疹,通常在上身或脸上(Wilson&Wilson,2021)。皮疹的特征是发红,水泡和剧烈的疼痛。病毒沿着从脊髓到身体的右侧或左侧的神经通路行进,导致皮肤神经的疼痛和水泡。带状疱疹会影响四分之一的三分之一的人,而这种疾病在50岁以上的人中最常见,但是任何患有水痘的人都会受到影响(Wilson&Wilson,2021年)。
带状疱疹,也称为带状疱疹,是一种特别令人衰弱的疫苗预防疾病(VPD),可显着影响一个人的功能和生活质量。超出了典型的皮疹,带状疱疹可能会引起痛苦。(2)毛刺后神经痛是持续数月和几年的最常见并发症。带状疱疹是由水痘带状疱疹病毒(VZV)的重新激活引起的,该病毒(VZV)也称为引起水痘的病毒。重新激活通常是由于免疫反应减弱而产生的几十年后。(3)有水痘的任何人都有经历带状疱疹的风险。(3)当前的数据表明,三分之一的成年人将在其一生中经历带状疱疹,大多数年龄超过50岁。(4)带状疱疹的普遍性将继续影响大部分老年人和几代老年人。尽管有证据表明,带状疱疹疫苗在预防和降低疾病严重程度方面具有疗效;缺乏意识和整合到强大的免疫政策中,其价值受到了阻碍。
囊泡释放的统计数据决定了突触如何传递信息,但经典的独立释放泊松模型并不总是适用于视觉和听觉的最初阶段。在那里,带状突触还将感觉信号编码为由两个或多个同时释放的囊泡组成的事件。这种协调的多囊泡释放 (MVR) 对脉冲产生的影响尚不清楚。在这里,我们使用纯速率代码研究了与泊松突触相比,MVR 如何影响感觉信息的传输。我们使用了泄漏积分和激发模型,结合了实验测量的斑马鱼(两种性别)视网膜双极细胞谷氨酸能突触的释放统计数据,并将它们与假设泊松输入受限于以相同平均速率运行的模型进行了比较。我们发现 MVR 可以增加每个囊泡产生的脉冲数量,同时减少脉冲间隔和第一次脉冲的延迟。综合效应是在模拟不同大小的目标神经元的一系列条件下提高信息传输效率(每个囊泡的位数)。当触发脉冲所需的收敛较少时,MVR 在具有短时间常数和可靠突触输入的神经元中最为有利。在单个输入驱动神经元的特殊情况下,如哺乳动物的听觉系统中,当脉冲产生需要多个囊泡时,MVR 会增加信息传输。这项研究表明,与泊松统计描述的速率代码相比,MVR 对囊泡的突触前整合如何提高感官信息的传输效率。
摘要:最大点功率跟踪(MPPT)技术被广泛用于改善光伏(PV)输出功率,并且传统的MPPT控制方法正在越来越广泛地使用。但是,由MPPT控制的PV系统不能直接应用于直流(DC)微电网,并且输出电压不稳定,导致高于DC总线额定电压。基于此问题,一些研究人员提出了DC BUS的控制方法。目前,关于世界上这种控制方法的研究很少,这一方面的研究状况和过程尚未详细讨论。本文通过参考现有相关文献的MPPT控制方法的DC总线分析并总结了PV系统,希望为随后的研究和相关研究人员的实验提供一些帮助。
深度学习已被证明是医学图像分析的重要工具。但是,需要准确标记的输入数据,通常需要专家的时间和劳动密集型注释,这是对深度学习使用的主要限制。解决这一挑战的一种解决方案是允许使用粗或嘈杂的标签,这可以允许图像的更有效,可扩展的标签。在这项工作中,我们根据熵正则化开发了偏斜的损失函数,该熵正规化假定目标注释中存在非平凡的假阴性率。从经过精心注释的脑转移病变数据集开始,我们通过(1)随机审查带注释的病变,并系统地审查最小的病变,从而用假阴性模拟数据。后者更好的模型真正的医师错误,因为较小的病变比较大的病变更难注意到。即使模拟的假阴性率高达50%,将我们的损失函数应用于随机审查数据的最大敏感性在基线的97%(未经审查的培训数据)下保留,而标准损失函数仅为10%。对于基于尺寸的审查制度,绩效从当前标准的17%恢复为88%,而我们的自举损失损失。我们的工作将与图像标记过程的更有效的缩放相同,并与其他方法并行,以创建更多效果的用户界面和注释工具。关键字:脑转移,细分,深度学习,假阴性,嘈杂标签
背景:神经外接口是侵入性最小的周围神经接口之一,因为它们位于神经外部。然而,与侵入性更强的接口相比,这些电极可能存在选择性和灵敏度较低的问题,因为目标神经纤维与电极的距离更远。新方法:通过微加工技术实现了溶解和吸引接口 (LACE),并旨在提高选择性和灵敏度,同时保持接口格式。它的工程设计在之前的工作中有所描述。LACE 是一种集成了微电极和微流体通道的混合接口。最终目标是通过微通道局部输送 (1) 溶解剂以去除将电极与神经纤维分开的结缔组织,和 (2) 神经营养因子以促进暴露的神经纤维轴突发芽到嵌入电极的微流体通道中,从而提高束状选择性和灵敏度。在这里,我们重点展示微流体和微电极在急性准备中的体内功能,其中我们评估局部去除结缔组织并用微通道嵌入微电极记录和刺激大鼠坐骨神经神经活动的能力。与现有方法的比较:虽然神经外接口优先考虑神经健康,而神经内接口优先考虑功能,但 LACE 代表了一种新的神经外方法,它可能在两个目标上都表现出色。结果:手术植入显示经过小心和最少的操作后,LACE 功能得以保留。体内电评估表明放置在微流体通道内的微电极能够成功刺激和记录来自大鼠坐骨神经的复合动作电位。此外,通过微通道输注胶原酶后,富含胶原的神经外膜被局部去除,并通过显微镜确认。结论:在对大鼠坐骨神经进行的急性实验中证明了使用集成微电极和微流体的cuffi来刺激、记录和输送药物以局部溶解神经外膜层的可行性。