在这方面,Goodfellow和同事引入了生成的对抗网络(GAN),该网络(GANS)生成具有与其“真实”对应物相似特征的合成数据(2)。可以将此类创建的图像添加到现有数据集中,并可能提供大量图像以增强数据集中的多样性,并最终改善ML算法。gan在医学成像中的进一步应用包括增加患有孤儿疾病(3)的患者的数据集,或重复对更常见疾病的罕见呈现,以至于可以从真实图像中训练有效的ML算法(4-8)。此外,在实验室动物研究中,替代被视为进一步减少活动物使用的最终目标(9),使甘斯能够打开大门,以实施实施可能模拟疾病的发作或进展。
摘要 我们回顾了量子光学中时间模式 (TM) 的概念,强调了 Roy Glauber 对其发展做出的关键性和历史性贡献,以及它们在量子信息科学中日益增长的重要性。TM 是正交的波包集,可用于表示多模光场。它们是光的横向空间模式的时间对应物,并发挥类似的作用——将多模光分解为分离统计独立自由度的最自然基础。我们讨论了如何开发 TM 来紧凑地描述各种过程:超荧光、受激拉曼散射、自发参量下转换和自发四波混频。可以使用非线性光学过程(例如三波混频和量子光学存储器)来操纵、转换、解复用和检测 TM。因此,它们在构建量子信息网络中发挥着越来越重要的作用。
ting Xia和研究团队已经表明,在中等温度下对结晶TIO 2纳米晶体进行真空处理,而真空水平较低会导致其结构,光学,电子和化学特征的显着改变。与未经处理的TIO 2纳米晶体相比,这些真空处理的对应物在储存锂离子中表现出明显增强的光催化活性和出色的性能。因此,这种创新的方法为增强TIO 2和其他氧化物纳米晶体的功能提供了有希望的途径。使用具有光反射纤维单元的安捷伦Cary 60 UV-VIS光谱仪测量TIO 2颗粒的反射光谱,该光谱仪显示了真空处理的TIO 2纳米晶体将其从UV扩展到近红外。
基于直接逻辑的电子-光子计算架构利用电子学和光子学的优点,在光学数字计算中得到广泛探索。一个典型的例子是提出的电子-光子算术逻辑单元 (EPALU),其中包括 20 Gb/s 光学全加器的实验演示 [1]。EPALU 中的其他逻辑电路,如数字比较器 [3] 和解码器 [4],也经过设计,具有高速 (20 Gb/s) 实验演示。这些集成光子数字计算电路具有可扩展性,能够处理更大位宽的输入,例如 64 或 128 位数据。此外,EPALU 的构建模块结合了波分复用 (WDM),以提高光学数字计算电路的面积效率。性能分析表明,EPALU 可以以超过 20 Gb/s 的速度运行,能源效率比基于晶体管的电气对应物高出一到两个数量级。
B 细胞急性淋巴细胞白血病 (B-ALL) 是骨髓 (BM) 分化 B 细胞的恶性对应物,最常发生在儿童中。虽然新的化疗药物组合极大地改善了年轻患者的预后,但复发后或成年患者的疾病预后仍然很差。这可能是由于 B-ALL 对治疗的反应不均一,这不仅依赖于白血病细胞的内在特性,还依赖于肿瘤细胞微环境传递的外在保护性线索。或者,白血病细胞有能力根据自己的需要塑造微环境。关于保护性微环境作用的大部分知识来自识别控制造血干细胞自我更新或 B 细胞分化的间充质细胞和内皮细胞。在这篇综述中,我们讨论了有关 B-ALL 保护性微环境的当前知识以及针对白血病细胞与其微环境之间串扰的疗法的开发。
在本文中,我们介绍了分布式交互式证明的量子对应物:现在可以是量子位,网络的节点可以执行量子计算。本文的第一个结果表明,通过使用分布式量子交互式证明,可以大大减少相互作用的数量。更确切地说,我们的结果表明,对于任何常数K,可以由k-turn classical(即非量词)分布式交互式协议决定的语言类别,具有F(n)-bit证书大小中包含的语言中包含,可以由5-Turn分布式量子交互协议与O(f(f(f(f))),可以决定使用5-Turn分布式交互协议。我们还表明,如果我们允许使用共享的随机性,则可以将转弯数减少到三个。由于目前尚无类似的转向还原经典技术,因此我们的结果也证明了在分布式交互式证明的设置中量子计算的力量。
在本文中,我们研究了围绕有限计划的限制性问题的七个推理任务的计算复杂性。我们为标准的经典计划和分层任务网络(HTN)计划做到这一点,每个计划都用于接地和取消代表。虽然有限计划的存在复杂性以古典规划而闻名,但尚未对HTN计划进行研究。进行计划验证,除了提起的HTN计划外,两种形式主义都可用于两种形式主义。我们将介绍提起HTN计划中计划验证的复杂性的下层和上限,并为其扎根的对应物提供一些新的见解,在这种情况下,我们表明验证不仅是一般案例中的NP - 已完成,而且已经严格限制了特殊情况。最后,我们展示了有关验证给定计划的最佳性的复杂性,并讨论了其与有限计划存在问题的联系。
智能机器能够切换形状配置,以适应动态环境的变化,因此在许多应用中具有潜力,例如精密医学,芯片上的实验室和生物工程。尽管智能材料和先进的微型/纳米制造的发展是我们的,但如何实现微型/纳米级的智能形状变形机,由于缺乏设计方法和策略,尤其是对于小规模的形状转换,因此仍然有着挑战。本综述旨在通过引入尺寸,模式,实现方法和形状变形微机械的应用来概述构建智能形状的微机械的原理和方法。同时,这篇评论通过比较微型机器与宏观分类的对应物进行了比较,并提出了下一代智能形状变形微机械的未来概述,从而强调了形状转换的优势和挑战。
精确计算多费米子量子系统的基态和激发态是当代物理和计算科学中最重要的挑战之一,其解决方案将从量子计算设备的出现中受益匪浅。现有的使用相位估计或变分算法的方法存在潜在缺点,例如深度电路需要大量误差校正或非平凡的高维经典优化。在这里,我们引入了一个收缩特征值方程的量子求解器,它是经典方法的量子类似物,用于求解基态和激发态的能量和简化密度矩阵。该求解器不需要深度电路或困难的经典优化,并且比其经典对应物实现了指数级加速。我们通过在量子模拟器和两个 IBM 量子处理单元上进行计算来演示该算法。
摘要 — 经典光频率梳已经彻底改变了从光谱和光钟到任意微波合成和光波通信等无数领域。利用这种成熟光学平台固有的稳健性和高维性,它们的非经典对应物,即所谓的“量子频率梳”,最近开始在光纤兼容量子信息处理 (QIP) 和量子网络中显示出巨大的潜力。本综述将介绍频率箱 QIP 的基本理论和实验,以及继续发展的机会。特别强调了最近展示的量子频率处理器 (QFP),这是一种基于电光调制和傅里叶变换脉冲整形的光子装置,能够以并行、低噪声方式实现高保真量子频率门。索引词 — 频率梳、量子计算、电光调制器、相位调制、光脉冲整形。