识别与治疗反应和治疗性变化的假定机制相关的个体差异因素可能会改善对强迫症(OCD)的治疗。我们对心理疗法的结构神经影像学标记(即形态计量学,结构连通性)和OCD的药物治疗反应的系统综述26符合条件的出版物(平均研究总计n = 54±41.6 [范围:11-175] [范围:11-175]; OCD组n = 29±19±19±19),以及成人的脑海中,以及成人的脑海中,成人的脑海中,成人的脑海中,适用于Adection n = 29±19)。作为与治疗相关的大脑结构变化。研究结果在整个研究中不一致。前扣带回皮层内(3/5区域,2/8全脑研究)和眶额皮层(5/10区域,2/7全脑研究)中的显着关联是最常见的,但后期性和方向性并不总是一致的。治疗反应的结构性神经影像学标记当前不具有临床实用性。给出越来越多的证据表明,复杂行为与大脑结构之间的关联的特征是小但有意义的效果,可能需要更大的样本。多元方法(例如机器学习)也可以改善神经影像数据的临床预测效用。
退后一步,患者人数很大,目前的护理标准不是
摘要 - 强化学习(RL)已成为人工智能(AI)和自我足够结构的迅速发展的领域,彻底改变了机器分析和进行选择的方式。在过去的几年中,RL显着提高了更复杂的算法和方法,这些算法和方法解决了越来越复杂的实际世界问题。这一进展是通过使用计算能力的增强,大数据集的可用性以及改进机器获得策略的驱动来驱动的,可以使RL解决从机器人技术和自动驾驶系统到医疗保健和财务的广泛行业的挑战。RL的效果在优化不确定和动态环境中优化选择制定程序的能力方面显而易见。通过从与环境的互动中了解,RL代理可以做出最大化冗长的时间奖励,适应转换情况并随着时间的推移增强的决策。这种适应性使RL在传统方法短暂落后,尤其是在复杂的,过度的空间和安排后的言论中的情况下成为宝贵的工具。本评论旨在提供有关当前RL国家的根本信息,强调其跨学科贡献以及它如何塑造AI和自主技术的命运。它讨论了RL如何影响机器人技术,自然语言处理和娱乐的改进,同时探索其部署的道德和实践要求的情况。此外,它研究了众多领域的主要研究,这些研究促成了RL的发展。
本文是对生命评论物理学的第一个20年中发表的最引用的文章之一的后续行动。特定的主题是“蚂蚁菌落优化”,它是解决挑战性优化问题的元疗法。由于自然蚂蚁菌落最短的路径发现行为的灵感,该优化技术构成了一个被称为群智能的较大领域的一部分。在对蚂蚁菌落优化的简短介绍之后,我们首先提供了针对算法发展而不是应用的年代。本文的主要部分介绍了对蚂蚁菌落优化文献的书目计量研究。关于有关出版物的地理起源以及随着时间的推移的研究重点的有趣趋势,可以从提出的图形和数字中学到。
作为一家北美公司,我们致力于遵守经营所在地区的所有适用法律。我们遵守劳工标准,并自豪地提供超出法律要求的招聘条件。在招聘时,每位员工都必须阅读并签署严格的政策,并承诺遵守法律。每个集团实体都会雇用自己的员工,确保我们的内部运营严格遵守法律。我们的设施定期接受检查,蒙特利集团致力于提供健康的工作环境,让员工有机会表达自己的想法并与管理层自由协商。
Biolife Solutions Inc. 3303 Monte Villa Parkway,Suite 310,Bothell,WA 98021美国T +1.866.424.6543或425.402.1400 F +1.425.4
正确的奖励模型规范是增强学习的众所周知的挑战。手工制作的奖励功能通常会导致效率低下或次优政策,并且可能与用户值不符。从Human Feffack中学习的强化学习是一种成功的技术,可以减轻此类问题,但是,人类反馈的收集可能会很费力。最近的著作已从预先训练的大语言模型而不是人类中征求反馈,以减少或消除人类的努力,但是,在存在幻觉和其他错误的情况下,这些方法会产生较差的表现。在本文中,我们研究了从大语言模型反馈中进行强化学习的优点和限制,并提出了一种简单而有效的方法,用于征求和将反馈作为基于潜在的塑造功能。我们从理论上和经验上表明,与先前的工作相比,我们的方法会导致更高的政策回报,即使有重大的排名错误,并消除了对奖励功能进行复杂后处理的需求。
