用于磁共振成像 (MRI) 的单图像超分辨率 (SISR) 重建引起了人们的极大兴趣,因为它不仅可以加快成像速度,还可以改善可用图像数据的定量处理和分析。生成对抗网络 (GAN) 已被证明在图像恢复任务中表现良好。在这项工作中,我们遵循 GAN 框架并开发了一个与鉴别器相结合的生成器来解决 T1 脑 MRI 图像上的 3D SISR 任务。我们开发了一种新颖的 3D 内存高效的残差密集块生成器 (MRDG),其在 SSIM(结构相似性)、PSNR(峰值信噪比)和 NRMSE(归一化均方根误差)指标方面实现了最先进的性能。我们还设计了一个金字塔池化鉴别器 (PPD) 来同时恢复不同尺寸尺度上的细节。最后,我们引入了模型混合,这是一种简单且计算效率高的方法,可以平衡图像和纹理
沙门氏菌是一种粮食性的致病细菌,在全球范围内引起沙门氏菌病。此外,沙门氏菌被认为是食品安全和公共卫生的严重问题。几种包括氨基糖苷,四环素,酚和B-乳酰胺的抗菌类别用于治疗沙门氏菌感染。抗生素已经开了数十年,以治疗由人类和动物医疗保健中细菌引起的感染。然而,大量使用抗生素会在包括沙门氏菌在内的几种食源性细菌中产生抗生素耐药性(AR)。此外,沙门氏菌的多药耐药性(MDR)急剧增加。除了MDR沙门氏菌外,全球据报道,除了MDR沙门氏菌,广泛的耐药性(XDR)以及PAN耐药(PDR)沙门氏菌。因此,增加AR正在成为严重的普遍公共卫生危机。沙门氏菌开发了许多机制,以确保其对抗菌剂的生存。针对这些抗生素的最突出的防御机制包括酶促失活,通过EF伏特泵从细胞中排出药物,改变药物的结构以及改变或保护药物靶标。此外,沙门氏菌的生物膜和质粒介导的AR形成,增强了其对各种抗生素的耐药性,使其在医疗保健和食品行业环境中都是充满挑战的病原体。本综述仅着重于提供沙门氏菌中AR机制的详细概述。
摘要。网络安全的进步对于一个国家的经济和国家安全至关重要。随着数据传输和存储的指数增加,迫切需要新的威胁检测和缓解技术。网络安全已成为绝对的必要性,每天每天都有越来越多的传输网络,导致数据存储在服务器上的数据的指数增长。为了阻止将来的复杂攻击,有必要定期更新威胁检测和数据保存技术。生成对抗网络(GAN)是一类无监督的机器学习模型,可以生成合成数据。gan在基于AI的网络安全系统中变得重要,例如入侵检测,隐肌,密码学和异常检测。本文对将gans应用于网络安全的研究进行了全面综述,包括对这些研究中使用的流行网络安全数据集和甘恩模型架构的分析。
1。重组质粒设计7 2。初始质粒提取7 3。消化和连接7 4。转换8 5。质粒提取,纯化和DNA测序8 6。蛋白质表达8 7。蛋白质纯化9
作者:E Kim · 2020 · 被引用 29 次 — 或者,防御可以通过预处理、量化或压缩来处理模型的输入 [47, 11, 17, 19, 28]。我们的工作是独特的,不...
广泛应用于自主驾驶中的基于深度学习的单眼深度估计(MDE)很容易受到对抗性攻击的影响。先前针对MDE模型的物理攻击依赖于2D广泛的补丁,因此它们仅影响MDE地图中的一个小型局部区域,但在各种观点下都失败了。为了解决这些限制,我们提出了3D深度傻瓜(3d 2傻瓜),这是对MDE模型的第一个基于3D纹理的对抗性攻击。3d 2傻瓜被专门优化,以生成3D对抗纹理对型号的车辆类型,并在恶劣天气条件(例如雨水和雾)中具有改善的鲁棒性。实验结果验证了我们3d 2傻瓜在各种情况下的出色性能,包括车辆,MDE Mod-els,天气状况和观点。现实世界中使用打印3D纹理的实验实验进一步表明,我们的3d 2傻瓜可能会导致超过10米的MDE误差。该代码可在https://github.com/gandolfczjh/3d2fool上找到。
本文介绍了一种新颖的胎儿脑部自动生物测量方法,该方法旨在满足中低收入国家的需求。具体而言,我们利用高端 (HE) 超声图像为低成本 (LC) 临床超声图像构建生物测量解决方案。我们提出了一种新颖的无监督域自适应方法来训练深度模型,使其对图像类型之间显著的图像分布变化保持不变。我们提出的方法采用双对抗校准 (DAC) 框架,由对抗途径组成,可强制模型对以下方面保持不变:i) 来自 LC 图像的特征空间中的对抗性扰动,以及 ii) 外观域差异。我们的双对抗校准方法估计低成本超声设备图像上的小脑直径和头围,平均绝对误差 (MAE) 为 2.43 毫米和 1.65 毫米,而 SOTA 分别为 7.28 毫米和 5.65 毫米。
媒体联系人:Gina Kirchweger gina@lji.org 848.357.7481即时释放T细胞,T细胞上升以与肠道科学家的感染作斗争,展示了一个特殊的T细胞如何通过小肠里漫游,以打击ca la jolla,ca -your ut ut ut ut ut ut ut。围绕小肠排列的细胞必须平衡两个看似矛盾的工作:吸收食物中的营养,同时保持警惕的病原体试图入侵您的身体。“这是病原体可以潜入的表面,” La Jolla免疫学研究所(LJI)助理教授Miguel Reina-Campos博士说。 “对于免疫系统来说,这是一个巨大的挑战。”那么,免疫细胞如何确保肠道安全?由LJI,加州大学圣地亚哥分校的科学家领导的新研究和艾伦免疫学研究所表明,抗原病原体的免疫细胞称为组织居民记忆CD8 T细胞(T RM细胞)经历了令人惊讶的转化,并恢复了小肠中的感染。实际上,这些细胞实际上在组织中上升较高,以在病原体传播到更深,更脆弱的地区之前对抗感染。“肠道中的组织已经发展为为免疫细胞浸润提供信号 - 将免疫细胞放置在特定的地方,因此它们具有更好的阻止病原体的能力,” Reina-Campos说,他与联合首先研究的新自然研究的第一作者和UC Sanivo和UC Sanivo的Alexander Monell一起担任了新自然研究的第一作者,并获得了UC Sanivo和联合Aneror Author Author Authorian Authorian Anegianian Heeg,M.Div。 和艾伦免疫学研究所和圣地亚哥分校的Ananda W. Goldrath博士。 新发现增加了免疫细胞适应特定组织的越来越多的证据体。和艾伦免疫学研究所和圣地亚哥分校的Ananda W. Goldrath博士。新发现增加了免疫细胞适应特定组织的越来越多的证据体。Reina-campos认为这些“组织居住”的免疫细胞可能是未来癌症的特定器官肿瘤的关键参与者。
对抗训练(AT)是提高深度神经网络鲁棒性的最常用机制。最近,一种针对中间层的新型对抗攻击利用了对抗训练网络的额外脆弱性,输出错误的预测。这一结果说明对抗训练中对抗扰动的搜索空间不足。为了阐明中间层攻击有效的原因,我们将前向传播解释为聚类效应,表征神经网络对于与训练集具有相同标签的样本的中间层表示相似,并通过相应的信息瓶颈理论从理论上证明了聚类效应的存在。随后我们观察到中间层攻击违反了 AT 训练模型的聚类效应。受这些重要观察的启发,我们提出了一种正则化方法来扩展训练过程中的扰动搜索空间,称为充分对抗训练(SAT)。我们通过严格的数学证明给出了经过验证的神经网络鲁棒性界限。实验评估表明,SAT 在防御针对输出层和中间层的对抗性攻击方面优于其他最先进的 AT 机制。我们的代码和附录可以在 https://github.com/clustering-effect/SAT 找到。
