摘要 — 单独增强单个深度学习模型的鲁棒性只能提供有限的安全保障,尤其是在面对对抗性示例时。在本文中,我们提出了 DeSVig,这是一个去中心化的 Swift Vigilance 框架,用于识别工业人工智能系统 (IAIS) 中的对抗性攻击,使 IAIS 能够在几秒钟内纠正错误。DeSVig 高度去中心化,提高了识别异常输入的有效性。我们尝试使用特殊指定的移动边缘计算和生成对抗网络 (GAN) 来克服由行业动态引起的超低延迟挑战。我们工作最重要的优势是它可以显着降低被对抗性示例欺骗的失败风险,这对于安全优先和延迟敏感的环境至关重要。在我们的实验中,工业电子元件的对抗样本由几种经典的攻击模型生成。实验结果表明,DeSVig 比一些最先进的防御方法更强大、更高效、更具可扩展性。
对抗训练(AT)是提高深度神经网络鲁棒性的最常用机制。最近,一种针对中间层的新型对抗攻击利用了对抗训练网络的额外脆弱性,输出错误的预测。这一结果说明对抗训练中对抗扰动的搜索空间不足。为了阐明中间层攻击有效的原因,我们将前向传播解释为聚类效应,表征神经网络对于与训练集具有相同标签的样本的中间层表示相似,并通过相应的信息瓶颈理论从理论上证明了聚类效应的存在。随后我们观察到中间层攻击违反了 AT 训练模型的聚类效应。受这些重要观察的启发,我们提出了一种正则化方法来扩展训练过程中的扰动搜索空间,称为充分对抗训练(SAT)。我们通过严格的数学证明给出了经过验证的神经网络鲁棒性界限。实验评估表明,SAT 在防御针对输出层和中间层的对抗性攻击方面优于其他最先进的 AT 机制。我们的代码和附录可以在 https://github.com/clustering-effect/SAT 找到。
摘要。网络安全的进步对于一个国家的经济和国家安全至关重要。随着数据传输和存储的指数增加,迫切需要新的威胁检测和缓解技术。网络安全已成为绝对的必要性,每天每天都有越来越多的传输网络,导致数据存储在服务器上的数据的指数增长。为了阻止将来的复杂攻击,有必要定期更新威胁检测和数据保存技术。生成对抗网络(GAN)是一类无监督的机器学习模型,可以生成合成数据。gan在基于AI的网络安全系统中变得重要,例如入侵检测,隐肌,密码学和异常检测。本文对将gans应用于网络安全的研究进行了全面综述,包括对这些研究中使用的流行网络安全数据集和甘恩模型架构的分析。
人工智能(AI)方法是现代世界不可或缺的一部分。如今,每个与智能手机互动的人都与AI接触(Herget,2024)(Wired Insider,2021)。 自从大型语言模型(LLMS)(CF(BSI,2024a)易于获得BSI的评论)以来,公众对AI存在的意识已广泛传播。 但是,自引入LLM之前,AI算法支持或自动执行决策过程。 Propublica的报告,即预测模型用于确定美国犯罪嫌疑人的累犯风险,受到了很大的关注(Angwin等,2016)。 在金融领域,基于AI的预测模型用于支持贷款申请的决定或预测金融市场的发展(Aziz等,2022)。 此外,使用基于AI的决策支持系统进行诊断和治疗患者的治疗,目前已在医学中进行了研究或部分实施(社论,2024年)(皇家放射学院,等,2023)(BSI,2024年)。 这些是高度敏感的领域,在这种领域中,错误的决定可能会对公民造成社会,法律,财务或健康损害。如今,每个与智能手机互动的人都与AI接触(Herget,2024)(Wired Insider,2021)。自从大型语言模型(LLMS)(CF(BSI,2024a)易于获得BSI的评论)以来,公众对AI存在的意识已广泛传播。但是,自引入LLM之前,AI算法支持或自动执行决策过程。Propublica的报告,即预测模型用于确定美国犯罪嫌疑人的累犯风险,受到了很大的关注(Angwin等,2016)。在金融领域,基于AI的预测模型用于支持贷款申请的决定或预测金融市场的发展(Aziz等,2022)。此外,使用基于AI的决策支持系统进行诊断和治疗患者的治疗,目前已在医学中进行了研究或部分实施(社论,2024年)(皇家放射学院,等,2023)(BSI,2024年)。这些是高度敏感的领域,在这种领域中,错误的决定可能会对公民造成社会,法律,财务或健康损害。
这项工作是在Ferheen Ayaz在格拉斯哥大学任职时完成的。作者的联系信息:伊德里斯·扎卡里亚(Idris Zakariyya),格拉斯哥大学,格拉斯哥,英国,idris.zakariyya@glasgow.ac.ac.uk; Ferheen Ayaz,城市,伦敦大学,伦敦,英国,ferheen.ayaz@city.ac.uk; Mounia Kharbouche-Harrari,法国Stmicroelectronics,Mounia.kharbouche-harrari@st.com;杰里米·辛格(Jeremy Singer),格拉斯哥大学,英国格拉斯哥,jeremy.singer@glasgow.ac.uk; Sye Loong Keoh,格拉斯哥大学,英国格拉斯哥,syeloong.keoh@ glasgow.ac.uk; Danilo Pau,意大利Stmicroelectronics,danilo.pau@st.com;何塞·卡诺(JoséCano),格拉斯哥大学,英国格拉斯哥,josecano.reyes@glasgow.ac.uk。
Aguilera说,在某些动物中已经成功地测试了吡喃吡啶,并且由制药公司Armaceutica对肺部晚期乳腺癌,肺癌和肝癌的一项试点研究显示,寿命有所增加。,但阿奎莱拉(Aguilera)警告说,在吡诺那丁可以用来治疗公众的癌症之前,它必须进行临床试验,这是一个多年的过程,该过程测试药物以确保其在人类中的安全性和功效。
“对AI系统的对抗性攻击可以采取微小的,几乎是看不见的调整来输入图像,这可以将模型引导到攻击者想要的结果的微妙修改。“这样的脆弱性使恶意行为者能够以真实产出为幌子以欺骗性或有害内容泛滥数字渠道,从而对AI驱动技术的信任和可靠性构成直接威胁。”
结果:VNI的读取器2额定总体图像质量高于VNC(4.90 vs. 4.00; p <.05),而阅读器1没有发现显着差异(4.96 vs. 5.00; p> .05)。在VNC和VNI中的读者之间观察到了实质性的一致性(Krippendorff的Alpha范围:0.628-0.748)。两位读者对VNI的频率不完全发生频率(读者1:29%vs. 15%; p <.05;读者2:24%vs. 20%; p> .05)。尿酸和较小的石头(<5 mm)比VNC和VNI中的Caox和较大的石头更有可能被减去。总体而言,与VNC相比,VNI的石材减法率更高(读者1:22%比16%;阅读器2:25%vs. 10%; p <.05)。辐射剂量和管电压均未显着影响石材减法(p> .05)。
“我们的实验室为该项目开发了一种定制的计算机辅助建模管道,该管道对肽的分子结构进行了建模,并与患病心脏细胞中预测的分子效应子相互作用。计算建模指导特定实验的设计研究分子机制。通过这种方式,计算机辅助建模的优势以及Ritterhoff博士和教授最有效地相互补充。”韦德教授说。