脑机接口 (BCI) 可以实现大脑与外部设备之间的直接通信。脑电图 (EEG) 因其便利性和低成本而成为 BCI 的常见输入信号。大多数对基于 EEG 的 BCI 的研究都集中在 EEG 信号的准确解码上,而忽略了它们的安全性。最近的研究表明,BCI 中的机器学习模型容易受到对抗性攻击。本文提出了基于对抗性过滤的基于 EEG 的 BCI 的逃避和后门攻击,这些攻击非常容易实现。在来自不同 BCI 范式的三个数据集上的实验证明了我们提出的攻击方法的有效性。据我们所知,这是第一项关于基于 EEG 的 BCI 对抗性过滤的研究,这引发了新的安全问题并呼吁更多关注 BCI 的安全性。
将机器学习 (ML) 技术集成到车载自组织网络 (VANET) 中,可为自动驾驶和 ITS 应用提供有前景的功能。本文使用 DSRC 数据来评估不同 ML 模型(包括朴素贝叶斯、随机森林、KNN 和梯度提升)在正常和对抗场景中的有效性。由于数据集相对不平衡,因此采用合成少数过采样技术 (SMOTE) 进行采样,并采用防御性蒸馏来提高模型对对抗性扰动的弹性。从结果中可以清楚地看出,梯度提升和随机森林等模型在两种情况下都表现出很高的准确性,从而表明在出现新威胁时使用机器学习来提高 VANET 安全性和可靠性的潜力。通过这项研究,阐明了 ML 在保护车辆通信方面的应用对于提高交通安全和流量的重要性。
摘要 - 随着机器学习模型持续集成到关键基础架构中,这些系统针对对抗性攻击的弹性对于所有领域都很重要。本文针对使用Ci-CflowMeter Parser的网络数据集引入了针对网络数据集的对抗性攻击生成器框架。我们对包括FGSMA,JSMA,PGD,C&W等各种突出的对抗攻击进行了全面评估,以评估其在OCCP数据集中的效果。对对抗发电机进行了精心评估,证明了模型性能的重大影响以检测潜在的扰动。结果展示了不同类型的对抗攻击的影响,这有助于未来的防御策略的批判性进步,以保护工业控制系统。索引术语 - 对话攻击,白色框,黑框,eva-sion
近年来,单发语音转换(VC)取得了重大进步,使能够用一个句子改变说话者特征。但是,随着该技术的成熟并产生了越来越现实的说法,它很容易受到隐私问题的影响。在本文中,我们提出了RW-Voiceshield,以保护声音免于复制。这是通过通过使用基于原始波形的生成模型产生的不可察觉的噪声来有效攻击单发VC模型来实现的。使用最新的单发VC模型进行测试,我们进行了测试,在黑盒和白色盒子方案下进行主观和客观评估。我们的结果表明,VC模型产生的话语与受保护的说话者的话语之间的说话者特征存在显着差异。此外,即使在受保护的话语中引入了对抗性噪声,说话者的独特特征仍然可以识别。索引术语:语音转换,对抗性攻击,扬声器verification,扬声器表示
背景:吸烟构成主要的公共卫生风险。聊天机器人可以作为一种可访问且有用的工具来促进停止,因为它们的高可访问性和促进长期个性化互动的潜力。为了提高有效性和可接受性,仍然需要识别和评估这些聊天机器人的咨询策略,这一方面在先前的研究中尚未全面解决。目的:本研究旨在确定此类聊天机器人支持戒烟的有效咨询策略。此外,我们试图深入了解吸烟者对聊天机器人的期望和经验。方法:这项混合方法研究结合了基于网络的实验和半结构化访谈。吸烟者(n = 229)与动机访谈(MI) - 式(n = 112,48.9%)或对抗性咨询 - 风格(n = 117,51.1%)聊天机器人相互作用。评估了与戒烟相关的(即退出和自我效能的意图)和与用户经验相关的结果(即,参与,敬业,治疗联盟,感知的移情和互动满意度)。对16名参与者进行了半结构化访谈,每个条件的8个(50%),并使用主题分析分析了数据。结果:多元ANOVA的结果表明,参与者的MI(VS对抗咨询)聊天机器人的总体评级明显更高。后续判别分析表明,对MI Chatbot的更好看法主要是用用户体验与相关的结果来解释的,与戒烟相关的结果扮演了较少的角色。探索性分析表明,在这两种情况下吸烟者都报告说,聊天机器人相互作用后戒烟和自我效能的意图增加。访谈结果说明了几种构造(例如情感态度和参与),解释了人们以前的期望以及聊天机器人的及时和回顾性经验。结论:结果证实聊天机器人是激励戒烟的有前途的工具,使用MI可以改善用户体验。我们没有为MI提供额外的支持来激励停止并讨论了可能的原因。吸烟者在退出过程中表达了关系和工具需求。讨论了对未来研究和实践的影响。
摘要随着我们越来越多地将人工智能整合到我们的日常任务中,至关重要的是要确保这些系统可靠且可靠地抵抗对抗性攻击。在本文中,我们介绍了Clef Checkthat任务6的参与!2024实验室。在我们的工作中,我们探索了几种方法,可以将其分为两类。第一组专注于使用遗传算法来检测单词并通过多种方法(例如添加/删除单词和使用同义)进行更改。在第二组方法中,我们使用大型语言模型来产生对抗性攻击。基于我们的综合实验,我们选择了基于遗传算法的模型,该模型利用分裂单词和同质同源物作为文本操纵方法的组合,作为我们的主要模型。我们根据Bodega度量和手动评估排名第三。
b'we提出了一个以福利为中心的博览会加强学习环境,在该环境中,代理商享受一组受益人的矢量值得奖励。给定福利函数W(\ xc2 \ xb7),任务是选择一个策略\ xcb \ x86 \ xcf \ x80,该策略大约优化了从start state s 0,即\ xcb \ xcb \ x86 \ xcf \ xcf \ xcf \ x80 \ x80 \ x80 \ x80 \ x80 \ x80 \ x80 \ x80 \ x80 \ x80 \ x80 \ xmax \ xcf \ x80 w v \ xcf \ x80 1(s 0),v \ xcf \ x80 2(s 0),。。。,v \ xcf \ x80 g(s 0)。我们发现,福利最佳政策是随机的,依赖起始国家的。单个行动是错误是否取决于策略,因此错误的界限,遗憾分析和PAC-MDP学习不会容易概括为我们的设置。我们开发了对抗性的KWIK(KWIK-AF)学习模型,其中在每个时间步中,代理要么采取勘探行动或输出剥削策略,因此勘探行动的数量是有限的,并且每个利用策略都是\ xce \ xce \ xb5-Welfelfare-welfelfare-Wertal的最佳。最后,我们将PAC-MDP减少到Kwik-af,引入公平的显式探索漏洞利用者(E 4)学习者,并证明其Kwik-af学习了。
多代理增强学习(MARL)系统中的对抗沟通可能会对其性能产生重大的负面影响。这可能导致系统的次级优势,这是由于不正确或误导性信息引起的决策不良。以前的消除或减少对抗性交流的方法表明,在特定情况下,多代理通信的空间特征可用于检测。但是,它们的有效性是有限的,并且没有很好的文档,尤其是在复杂的场景和针对具有国防策略知识的恶意代理商中。此外,尽管许多先前的作品都集中在代理到代理交流的规范上,但其时间的性质和特征已在很大程度上被忽略了。在这项工作中,我们基于在时间图上的异常检测技术来测试许多不同的假设,以检测MARL系统中对抗性通信的检测和抑制。此外,我们提出了一种新颖的方法,并系统地评估了其在两个复杂的合作场景上使用各种不同的对手剂的有效性。最后,我们开发了一个框架,用于通过对抗性通信进行MARL实验,该实验可以为设计一致且可重现的实验提供统一的方法。
对抗性机器学习 (ML) 的最新研究工作已经调查了问题空间攻击,重点关注在与图像不同、没有明确的特征空间逆映射的领域(例如软件)中生成真实的规避对象。然而,问题空间攻击的设计、比较和现实影响仍未得到充分探索。本文做出了三个主要贡献。首先,我们提出了问题空间中对抗性 ML 规避攻击的一般形式化,其中包括对可用转换、保留语义、缺失伪影和合理性的全面约束集的定义。我们阐明了特征空间和问题空间之间的关系,并引入了副作用特征的概念作为逆特征映射问题的副产品。这使我们能够定义并证明问题空间攻击存在的必要和充分条件。其次,基于我们的一般形式化,我们提出了一种针对 Android 恶意软件的新型问题空间攻击,该攻击克服了过去在语义和伪影方面的限制。我们已经在包含 2016 年和 2018 年的 15 万个 Android 应用程序的数据集上测试了我们的方法,结果表明逃避最先进的恶意软件分类器及其强化版本的实际可行性。第三,我们探索对抗性训练作为一种可能方法来增强对抗性样本的鲁棒性的有效性,评估其在不同场景下对所考虑的机器学习模型的有效性。我们的结果表明,“对抗性恶意软件即服务”是一种现实威胁,因为我们会自动大规模生成数千个真实且不显眼的对抗性应用程序,平均只需几分钟即可生成一个对抗性实例。
摘要。随着自主着陆系统中深度学习技术的发展不断增长,面对可能的对抗性攻击,主要挑战之一是信任和安全。在本文中,我们提出了一个基于对抗性学习的框架,以使用包含干净本地数据及其对抗性版本的配对数据来检测着陆跑道。首先,本地模型是在大型车道检测数据集上预先训练的。然后,我们求助于预先训练的模型,而不是利用大实例 - 自适应模型,而是诉诸于一种称为比例和深度特征(SSF)的参数 - fne-fne-tuning方法。其次,在每个SSF层中,干净的本地数据及其广泛的广告版本的分布被列出,以进行准确的统计估计。据我们所知,这标志着联邦学习工作的frst实例,该工作解决了登陆跑道检测中对抗性样本问题。我们对降落方法跑道检测(猪油)数据集的合成和真实图像的实验评估始终证明了所提出的联邦对抗性学习的良好性能,并对对抗性攻击进行了鲁棒。