摘要 筛选已批准的药物以检测其对抗新型病原体的活性可能是全球应对流行病的快速反应策略的重要组成部分。这种高通量重新利用筛选已经确定了几种具有对抗 SARS-CoV-2 潜力的现有药物。然而,要将这些热门药物开发为专门针对这种病原体的药物,需要明确识别它们相应的靶标,而高通量筛选通常无法揭示这一点。我们在此介绍了一种新的计算逆对接协议,该协议使用全原子蛋白质结构和对接方法的组合对几种现有药物的靶标进行排序,最近的多个高通量筛选检测到了这些药物的抗 SARS-CoV-2 活性。我们用已知的药物-靶标对(包括非抗病毒和抗病毒化合物)证明了该方法的有效性。我们对 152 种可能适合重新利用的不同药物进行了逆对接程序。最常见的优先靶标是人类酶 TMPRSS2 和 PIKfyve,其次是病毒酶解旋酶和 PLpro。所有选择 TMPRSS2 的化合物都是已知的丝氨酸蛋白酶抑制剂,而那些选择 PIKfyve 的化合物都是已知的酪氨酸激酶抑制剂。对对接姿势的详细结构分析揭示了这些选择产生的原因,并可能有助于更合理地设计针对这些靶标的新药。
抽象动机重新利用的药物最初被批准用于治疗疾病的药物被重新治疗其他疾病,尤其是在大流行时,人们引起了人们的关注。基于结构的药物设计,整合了小分子对接,分子动力学(MD)模拟和AI,已证明其在简化新药物开发和重新利用的药物中的重要性。非常需要使用所有FDA药物,复杂的编程,准确的药物排名方法和友好的用户界面进行复杂且完全自动化的药物筛查。Results Here we introduce a new web server, DRDOCK, D rug R epurposing DO cking with C onformation-sampling and pose re-ran K ing - refined by MD and statistical models, which integrates small molecular docking and molecular dynamic (MD) simulations for automatic drug screening of 2016 FDA-approved drugs over a user-submitted single-chained target protein.这些药物是通过使用log-odds(LOD)评分的新型药物级方案进行排名的,该方案源自真正的粘合剂和诱饵的特征分布。用户可以提交一系列LOD排名姿势,以进行进一步的基于MD的绑定亲和力评估。我们证明了我们的平台确实可以恢复NSP16的底物之一,即Cap Ribose 2'-O甲基转移酶,并建议可以重新使用Fluralaner,Tegaserod和Fenoterol进行COVID19治疗,并在SARS-COV2抑制实验中得到证实。所有采样的对接姿势和轨迹都可以通过我们的Web界面进行3D观看并播放。(由于硬件升级,该服务在7/18,2021之前不可用)该平台对于普通科学家和医学研究人员来说易于使用,以便在几天之内进行药物重新利用,这应该为我们及时对新兴疾病暴发的及时反应增加价值。可用性和实现DRDOCK可以从https://dyn.life.nthu.edu.tw/drdock/自由访问。
最近已经提出了动机的强大生成模型,但这些方法中很少有支持柔性蛋白质配体对接和亲和力估计。没有人可以直接对多种结合配体进行同时建模,也可以根据药理学相关的药物靶标进行严格的标准,从而阻碍了它们在药物发现工作中的广泛采用。 导致这项工作,我们提出了FlowDock,这是一种基于条件流量匹配的深几何生成模型,该模型学会了将其直接映射到其绑定的(Holo)对应物中,以将其映射到任意数量的结合配体中。 此外,Flowdock与其每种生成的蛋白质配体复杂结构中提供了预测的结构置信度评分和结合亲和力值,从而实现了新(多配体)药物目标的快速虚拟筛选。 对于常用的PoseBusters基准数据集,Flotdock使用Unbound(APO)蛋白质输入结构实现了51%的盲区对接成功率,而没有任何来自多个序列比对的信息,并且对于具有挑战性的新Dockgen-E数据集,FlotDock与单次序列Chai-1的性能相匹配。 此外,在第16个社区范围内的结构预测技术批判性评估(CASP16)的配体类别中,Flowdock在140种蛋白质配体复合物中的药理学结合亲和力估计的前5位方法中排名,证明了其在虚拟筛选中的学位表达的功效。没有人可以直接对多种结合配体进行同时建模,也可以根据药理学相关的药物靶标进行严格的标准,从而阻碍了它们在药物发现工作中的广泛采用。导致这项工作,我们提出了FlowDock,这是一种基于条件流量匹配的深几何生成模型,该模型学会了将其直接映射到其绑定的(Holo)对应物中,以将其映射到任意数量的结合配体中。此外,Flowdock与其每种生成的蛋白质配体复杂结构中提供了预测的结构置信度评分和结合亲和力值,从而实现了新(多配体)药物目标的快速虚拟筛选。对于常用的PoseBusters基准数据集,Flotdock使用Unbound(APO)蛋白质输入结构实现了51%的盲区对接成功率,而没有任何来自多个序列比对的信息,并且对于具有挑战性的新Dockgen-E数据集,FlotDock与单次序列Chai-1的性能相匹配。此外,在第16个社区范围内的结构预测技术批判性评估(CASP16)的配体类别中,Flowdock在140种蛋白质配体复合物中的药理学结合亲和力估计的前5位方法中排名,证明了其在虚拟筛选中的学位表达的功效。可用性和实现源代码,数据和预训练的模型可在https://github.com/ bioinfaramefaraminelearning/flowdock上找到。
项目简介:Smart EcoClean Matrix 藻类过度生长带来严重的环境健康问题,但开发一种具有成本效益的长期抑制藻类生长的解决方案仍然是一个巨大的挑战。本发明利用包含安全环保的生物活性成分的杀藻水凝胶,在淡水和海水中实际应用。该水凝胶可以以受控的方式释放氧化性和细胞渗透性杀藻剂,以长时间抑制藻类生长,而不会对水生生物产生不利影响。它们的控释性能和杀藻活性已在实验室和香港的1500立方米海水水库中得到验证。实时监测设备有效地提供数据来调整水凝胶的数量并进行日常水质检测。关键技术优势:
摘要:本研究通过对六种常用抗癌药物的构象分析,确定了能量最低的分子结构,以作为对接模拟的初始数据。利用AutoDock Vina软件,研究了6种FDA批准的药物(培美曲塞、伊立替康、他莫昔芬、吉西他滨、拓扑替康和替莫唑胺)与DNA的相互作用机制。此外,对所研究的药物-DNA结构进行了MM/PB(GB)SA计算。计算出的相互作用的结合亲和力和结合自由能显示了结构的稳定性。研究发现,这些分子与DNA相互作用的活性位点是相同的,它们的各种相互作用,主要是氢键,对结构的稳定性起着重要作用。此外,还确定了所研究分子的药效团特征。本研究的目的是深入研究标题药物与DNA的结合性质。
• SpaceX-Crew5 发射/对接(综合机组人员) • SpaceX-Crew4 脱离对接/溅落 • Progress 82P 发射/对接 • Northrop Grumman CRS-18 发射/停泊 • SpaceX CRS-26 发射/对接(iROSA) • US iROSA EVA(准备 1B、安装 4A、安装 3A 和准备 1A) • RS EVA 55、56、57、58 和 59 • SpaceX CRS-26 脱离对接 • Northrop Grumman CRS-18 释放 • Boeing-CFT 发射/对接/脱离对接/溅落 • Progress 81P 脱离对接 • Progress 83P 发射/对接 • SpaceX-Crew6 发射/对接(综合机组人员 + 阿联酋) • Northrop Grumman CRS-19 发射/停泊 • SpaceX CRS-27 发射/对接 • SpaceX CRS-27脱离对接 • 联盟 69S 发射/对接 • 联盟 68S 脱离对接/着陆
冠状病毒是造成严重影响的病毒之一,始于 2019 年;世界各地已记录了许多死亡病例。这种病毒会引起咳嗽、呼吸急促、高热和急性呼吸道综合征,随后呼吸困难和死亡。尽管已经研制出几种疫苗使我们能够控制冠状病毒,但我们仍然没有有效的药物来治疗它;我们的目标是利用分子对接找到一种对 COVID-19 具有良好活性的药物。在这项研究中,我们使用了 GOLD 程序(一种模拟程序),并检查了几种化合物与蛋白酶、婴儿蛋白酶等酶的结合程度。结果是罗红霉素可能对治疗冠状病毒非常有效,并且具有高结合率,化合物 TT 的结合率达到 97%。本研究以SARS-CoV-2的木瓜蛋白酶样蛋白酶和RNA依赖性RNA聚合酶为对照分子,估算了其结合亲和力,结果表明罗红霉素的结合亲和力最高。本研究得出结论,在对Mpro、PLpro和RdRp这3种酶进行分子对接后,罗红霉素显示出良好的对接结果。单独使用罗红霉素或与其他药物联合使用,对抗新冠病毒是可能的。
MAPK是通用的真核信号传导因子,其功能被认为取决于其激活剂,底物和iNactivators对公共对接基序(CD)的识别。我们通过执行相互作用的基础并确定结合配体结合的MPK4晶体结构来研究拟南芥MPK4的CD结构域的作用。我们揭示了MPK4的CD域对于其上游MAPKKS MKK1,MKK2和MKK6对于相互作用和激活至关重要。cys181被证明是对活性氧的体外响应的磺酰基的。为了测试C181在体内的功能,我们生成了野生型(WT)MPK4-C181,Nonsulfenylabable MPK4-C181S,并在MPK4淘汰赛中模仿MPK4-C181D线的潜在硫乙基。我们分析了MPK4-C181S具有WT活性并补充MPK4表型的生长,发育和压力反应中的表型。相比之下,MPK4-C181D不能被上游MAPKK激活,并且不能补充MPK4的现场类型。我们的发现表明,CD基序是必不可少的,并且是由上游MAPKK激活MPK4功能所必需的。此外,生长,发育或免疫功能需要上游激活MPK4蛋白激酶。