大型语言模型(LLMS)与对话用户界面(CUI)的集成已大大改变了健康信息,从而提供了互动式访问卫生资源。尽管信任在采用健康建议方面非常重要,但在LLM提供的信息中,用户界面的信任感知仍然不清楚。我们的混合方法研究调查了使用相同的LLM源时不同的CUI(基于文本,基于语音和体现的)感染信任。关键发现包括(a)与其他人相比,通过基于文本的界面传递的信息的较高信任水平; (b)对接口的信任与所提供的信息之间的显着相关性; (c)参与者的先前经验,具有不同方式和演示方式的信息的处理方法以及可用性水平是与健康相关信息信任的关键决定因素。我们的研究阐明了LLM的健康信息及其传播的信任感,强调了用户界面在可信赖和有效的健康信息中与LLM驱动的CUI一起寻求的重要性。
术语 A = 动作空间 a = 动作 a ,b = 机械手长度属性,m B = 值分布箱的数量 C = 科里奥利矩阵 dt = 目标上的对接口位置,m E = 期望 h = 角动量,kg ⋅ m2 ∕ s I = 转动惯量,kg ⋅ m2 J = 总预期奖励 K = 参与者数量 L = 损失函数 l = 线性动量,kg ⋅ m ∕ s M = 质量矩阵 M = 小批量大小 m = 质量,kg N = N 步返回长度 N = 正态分布 p = 位置,m R = 重放缓冲区大小 r = 奖励 u = 控制力度 v = 速度,m ∕ s X = 状态空间 x = 总状态;特定状态,下标为 c 或 tx = x 方向的位置,m Y = 目标值分布 y = y 方向的位置,m Z ϕ = 具有参数 ϕ 的价值神经网络 α = 策略网络学习率 β = 价值网络学习率 γ = 未来奖励的折扣因子 ϵ = 权重平滑参数 π θ = 具有参数 θ ϕ 0 或 θ 0 的策略神经网络 = ϕ 或 θ ϕ 的指数平滑版本,q = 角度,度 σ = 探索噪声标准差 ω = 角速率,rad ∕ s
Quasiperiodicity最近提出了增强超导性及其接近效应。同时,在制造准碘结构(包括降低的尺寸)方面已经有显着的实验进步。以这些发展的启发,我们使用微观的紧密结合理论通过弹道纤维纤维链链附着于两个超导导线来研究DC Josephson效应。斐波那契链是准晶体中最知名的示例之一,具有丰富的多型频谱,其中包含具有不同绕组数字的拓扑间隙。我们研究了Andreev结合的状态(ABS),电流相关关系和临界电流如何取决于从短到长连接的准二体自由度。虽然电流相关关系显示传统的2π弦或锯齿状示例,但我们发现ABS会产生准二旋转振荡,并且质量改变了Andreev的反射,从而导致准二氧化型振荡,从而导致对接口长度的关键电流中的准静脉振荡。令人惊讶的是,尽管与晶体连接相比,较早提出了准二氧化性增强超导性的提议,但通常,我们并没有发现它会增强临界电流。但是,由于修改了Andreevev的反射,我们发现了降低界面透明度的显着电流增强。此外,通过改变化学电位,例如,通过施加的栅极电压,我们发现了超导体正常金属 - 螺旋体(SNS)和超导体 - 导管器 - 绝缘体 - 抑制剂 - perppercconductor(SIS)行为之间的分形振荡。最后,我们表明,子段状态的绕组导致临界电流中的等效绕组,因此可以确定绕组数,从而确定拓扑不变性。
混合有机 - 无机卤化物钙钛矿的太阳能电池近年来引起了人们的兴趣,这是由于其对限制和空间应用的潜力。对接口的分析对于预测设备行为和优化设备体系结构至关重要。研究掩埋界面的最先进的工具本质上具有破坏性,并且可能导致进一步的退化。离子束技术,例如Rutherford反向散射光谱法(RBS),是一种有用的非破坏性方法,用于探测多层钙钛矿太阳能电池(PSC)的元素深度谱以及研究各个接口跨接口物种的各种元素之间的相互膨胀。此外,PSC正在成为空间光伏应用的可行候选者,研究其辐射诱导的降解至关重要。RB可以同时利用它们在空间轨道中的存在,分析设备上He + Beam引起的辐射效应。在当前工作中,使用2 meV He +梁来探测具有构建玻璃 /ito /ito /iTO /sno 2 /cs 0.05(MA 0.17 fa 0.83)0.95 pb(I 0.83 BR 0.17)3 /sipo-houso-houso-obso-soptAd /moo 3 /moo 3 /au。在分析过程中,设备活性区域暴露于高达1.62×10 15 He + /cm 2的辐射,但尚未观察到梁诱导的离子迁移的可测量证据(深度分辨率约为1 nm),暗示PSC的高放射耐受性。另一方面,年龄的PSC在设备的活动区域中表现出各种元素物种的运动,例如Au,Pb,in,Sn,Br和I,在RBS的帮助下进行了量化。
“我们被要求成为未来的建筑师,而不是未来的受害者” Richard Buckminster-Fuller 这本书是关于“系统的系统”的。如果您在 GOOGLE 中搜索此术语,结果为 0.60 秒内 (20.9.2016) 的 176'000'000 个结果。这一事实清楚地表明了这一领域的重要性和活力!然而,它也表明了与系统的系统相关的观点、概念和意见的广泛和多样化。技术系统的系统 - 以网络化、独立的组成计算系统的形式,暂时协作以实现明确的目标 - 构成了当今大多数基础设施的骨干。能源网、大多数运输系统、全球银行业、供水系统、军事装备、许多嵌入式系统以及其他许多系统都强烈依赖于系统的系统。这些底层系统的系统的正确运行和持续可用性对于我们现代社会的运转至关重要。纵观这样的系统系统,一个属性显然很突出:复杂性。现代的系统系统已经达到了一定的结构和行为复杂程度,这使得理解它们变得困难——在许多情况下是不可能。因此,设计、实施、维护和发展当今的许多系统系统需要大量的工程工作和资金投入。由于引入了新的特性,当系统的系统形成时——例如突发行为,特别是不可预测的突发行为——也引入了新的风险因素。由于我们几乎完全依赖这种不断发展的系统,我们需要可靠的方法、原则和工具来管理我们的系统在当今日益复杂、不断变化和无情不确定性的世界中的发展。这本书是在这个有趣而重要的道路上向前迈出的一步。实现这一目标的第一步是开发一套可理解且一致的概念来描述系统领域。在当前最先进的技术下情况并非如此:因此,这是本书对社区的第一个有价值的贡献。系统的系统通过其组成系统和物理环境之间的接口交换信息和控制而变得活跃。系统的系统中最令人着迷和最令人不安的现象是涌现:只有当组成系统开始合作时,行为或属性才会变得活跃或可见。接口负责系统中的许多属性,因此需要详细关注:这是本书的第二个令人印象深刻的成果——对接口定义、规范、实现和监控的彻底处理。涌现已在许多背景下以多种目标进行了研究:在这里我们发现了一个具有重要新概念的一致理论,适用于许多系统。这是一项重大研究成果。