动力学核极化(DNP)是一种强大的方法,它允许通过微波辐照电子Zeeman跃迁来传递电子极化,从而使几乎任何旋转核的核对任何旋转核的核两极化。在某些条件下,可以使用热混合(TM)模型以热力学术语描述DNP过程。不同的核物种可以通过与电子旋转的相互作用并达到共同的自旋温度间接交换能量。在质子(H)和氘(D)核之间可能发生这种“串扰”效应,并在脱离和重新偏振实验中发生。在这项工作中,我们将这种效应在实验中,使用质子化或剥离的tempol自由基作为偏振剂。对这些实验的分析基于普罗威尔托洛罗的方程式,可以提取相关的动力学参数,例如不同储层之间的能量传递速率以及非Zeman(NZ)电子储量的热容量,而Proton和Deuterium Reservoirs的热能可以基于其估计的表现。这些参数允许人们对杂核的行为(例如碳-13或磷-31)进行预测,但前提是它们的热容量可以忽略不计。最后,我们介绍了Propotorov动力学参数对Tempol浓度和H/D比的依赖性的实验研究,从而提供了对“隐藏”自旋的性质的洞察力,由于它们与自由基的接近,这些自旋的性质无法直接观察到。
同源重组因子在 DNA 复制过程中对保护新生 DNA 起着至关重要的作用,但染色质在此过程中的作用尚不清楚。在这里,我们使用了已知可在酿酒酵母中诱导位点特异性复制叉停滞的细菌 Tus/Ter 屏障。我们报告称,Set1C 亚基 Spp1 被募集到停滞的复制叉后面,与其与 Set1 的相互作用无关。Spp1 染色质募集依赖于其 PHD 结构域与沉积在停滞叉后面的 H3K4me3 亲本组蛋白的相互作用。它的募集通过限制 Exo1 的访问来防止 ssDNA 在停滞叉处积累。我们进一步表明,删除 SPP 1 会增加屏障上游的突变率,有利于微缺失的积累。最后,我们报告称 Spp1 保护 Tus/Ter 停滞复制叉处的新生 DNA。我们认为 Spp1 限制了叉的重塑,最终限制了新生 DNA 对核酸酶的利用。
据众所周知,RECHB是唯一描述的具有这种扩展活性的核酸酶。 div>很有可能在自然界中具有这些特征,但是在天然酶的空间中,可能会很艰巨,昂贵且需要很长时间。 div>同样,基于自动学习的计算方法仍在开始,尚无法设计具有复杂和受控功能的酶,例如大型构象变化。 div>开发了深度学习方法(OpenCrispri-1),尽管有希望,但尚未证明具有新功能设计蛋白质的能力。 div>这些限制突出了ASR生成具有多种和改进特性的复杂合成酶的能力,并开放了与深度学习和语言方法结合的新方法。 div>
如今,基因改造基因组经常用于许多基础和应用研究领域。在许多研究中,编码或非编码区域被故意修改,以改变蛋白质序列或基因表达水平。修改基因组中的一个或多个核苷酸也会导致基因表观遗传调控的意外变化。因此,在设计具有许多突变的合成基因组时,能够预测这些突变对染色质的影响将非常有用。我们在此开发了一种深度学习方法,可以量化每个可能的单个突变对整个酿酒酵母基因组上核小体位置的影响。这种类型的注释轨道可用于设计改良的酿酒酵母基因组。我们进一步强调了该轨道如何为驱动核小体在体内位置的序列依赖机制提供新的见解。关键词——深度学习、基因组学、酿酒酵母、突变、合成生物学、核小体、DNA 基序
核酸感应是先天免疫系统的重要组成部分,而核酸传感器属于一类受体,被广泛称为模式识别受体 (PRR)。PRR 最初是作为对病原体的免疫反应的一部分进行研究的。该概念指出,宿主需要受体以非特异性的方式广泛感知入侵的病原体,并触发启动病原体特异性适应性免疫反应所需的细胞的激活。根据这一核心概念,PRR 识别病原体相关分子模式 (PAMP),它由入侵病原体的部分组成,例如它们的核酸基因组。PRR 与 PAMP 的结合会在受感染细胞中诱导信号级联,导致产生细胞因子,包括干扰素,这些细胞因子会分泌到细胞外环境中。这些细胞因子具有多种作用,例如促进邻近细胞对感染的抵抗力和募集对适应性反应至关重要的免疫细胞。然而,PRR 如何区分宿主核酸(自身)和病原体来源的核酸(非自身)一直受到研究。此外,由于在传染性或非传染性病理过程中出现的危险相关分子模式 (DAMP),并且可以包括自身核酸,因此 PRR 可以在无菌条件下(即没有病原体的情况下)被激活。识别这些激活 PRR 的自身核酸的性质是一个正在进行的研究领域,可以为自我/非自我识别的机制提供信息。新的 PRR 仍在被发现,并且 PRR 除了产生细胞因子之外的作用也在不断报道。因此,核酸传感领域正在多个层面上扩展,本研究课题旨在拓宽我们对这一复杂研究领域的视野。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
约 30 年。由于这两种放射性核素会形成许多可溶性盐,因此最有可能污染水体。此外,鉴于铯盐的挥发性相对较高,它是意外泄漏后在环境中传播最广泛的物种。例如,福岛事故向环境中释放了约 10 PBq 的 137 Cs,2 去除这种放射性核素仍然是清理工作的重要组成部分。40 多年来,铝硅酸盐沸石一直作为核废料处理的离子交换介质发挥着重要作用,可以选择性地去除废水中的铯和锶。 1985 年,英国核燃料有限公司 (BNFL) 成功启用了位于塞拉菲尔德的现场离子交换废水处理厂 (SIXEP),该厂使用天然沸石斜发沸石去除所有水体中的铯和锶,然后再将其排入大海。3 这导致废水污染急剧减少。另外两种对 Cs + 和 Sr 2+ 具有良好选择性的沸石是菱沸石和 4A 沸石。菱沸石在自然界中以富钠形式存在(斜沸石),对 Cs + 具有良好的选择性,对 Sr 2+ 具有中等选择性。 4,5 Dyer 和 Zubair 已证明,对于许多阳离子(Na + 、K + 、Rb + 、Mg 2+ 、Ca 2+ 、Sr 2+ 和 Ba 2+ ),选择性在热力学上是有利的,并且通常与 Cs + 和可替换阳离子之间的尺寸差异相关。6
12 Maximilian Kotz、Anders Levermann 和 Leonie Wenz,“气候变化的经济承诺”,《自然》628,第 8008 期(2024/04/01 2024),doi.org/10.1038/s41586-024-07219-0,doi.org/10.1038/s41586-024-07219-0。Luke Kemp 等人,“气候终局:探索灾难性气候变化情景”,《美国国家科学院院刊》119,第 34 期(2022/08/23 2022),doi.org/10.1073/pnas.2108146119,doi.org/10.1073/pnas.2108146119。 Peter Schwartz 和 Doug Randall,《气候突变情景及其对美国国家安全的影响》,美国国防部(华盛顿:美国国防部,2004 年 2 月 2003 年),stephenschneider.stanford.edu/Publications/PDF_Papers/SchwartzRandall2004.pdf,purl.access.gpo.gov/GPO/LPS69716。
•气候变化对欧洲气候区域以及短期(建筑,运营)和长期(关闭后)期间对核废料管理设施和地点产生影响。•针对稳定的气候风险评估的数据管理,协议,方法和实践中确定的差距的行动的一组建议和建议。•链接到WP2 KM任务2
方法 68 只约 10 月龄的比格犬,在加强疫苗接种前 7 个月以上接种过疫苗,根据性别和研究前滴度水平随机分为 3 个治疗组:假剂量(第 1 组)、1 倍(第 2 组)或 3 倍(第 3 组)标示剂量的伊诺替尼。动物每天接受治疗,共 56 天,并在第 28 天接受市售的灭活狂犬病毒 (RV)、犬腺病毒-2 (CAV-2)、犬瘟热病毒 (CDV) 和犬细小病毒 (CPV) 加强疫苗接种。在第 -1 天、第 28 天(加强疫苗接种前)、第 43 天(加强疫苗接种后 15 天)和第 56 天(加强疫苗接种后 28 天)测量每种抗原的抗体滴度。保护性抗体滴度阈值定义如下:狂犬病(0.5 IU/mL)、CAV-2(≥16)、CDV(≥32)和CPV(≥80)。每天观察狗是否有任何临床异常。