最近,几种方法探索了多对比磁共振成像(MRI)超分辨率(SR)的潜力,并获得了优于单对比SR方法的结果。但是,现有方法仍然存在两个缺点:(1)它们只能解决固定的Inter Intermpling量表,例如2×,3×和4倍,它们需要培训并存储临床上每个UPSMPLAING SCALE的相应模型。(2)他们在采用方形窗口(例如8×8)变形金刚网络档案时缺乏直接交互,这导致长范围依赖性的建模不足。此外,参考图像和目标图像之间的关系尚未完全挖掘。为了解决这些问题,我们开发了一个新颖的网络,用于多对比度MRI任意规模的SR,被称为McASSR。具体来说,我们设计了矩形窗口交叉注意变压器,以在MR图像中建立长期依赖性,而无需增加计算复杂性并完全使用参考信息。此外,我们提出了参考吸引的隐式关注,作为提升的模式,通过隐式神经表示实现了任意规模的超分辨率,进一步融合了参考图像的补充信息。在公共和临床数据集上进行了广泛而全面的实验表明,我们的MCASSR比SOTA方法产生了卓越的性能,这表明其在临床实践中的巨大潜力。代码将在https://github.com/guangyuankk/mcassr上找到。
核磁共振 (NMR) 是对原子核磁特性的光谱研究。原子核的质子和中子具有与其核自旋和电荷分布相关的磁场。共振是一种能量耦合,当单个原子核被置于强外部磁场中时,它会选择性地吸收并随后释放这些原子核及其周围环境所特有的能量。自 20 世纪 40 年代以来,NMR 信号的检测和分析已作为化学和生物化学研究中的分析工具得到了广泛的研究。NMR 不是一种成像技术,而是一种提供有关放置在小体积、高场强磁性装置中的样本的光谱数据的方法。在 20 世纪 70 年代初,人们意识到磁场梯度可用于定位 NMR 信号并生成显示质子磁特性的图像,反映临床相关信息,再加上技术进步和“体型”磁体的发展。随着 20 世纪 80 年代中期临床成像应用的增多,“核”含义被抛弃,磁共振成像 (MRI) 及其大量相关缩略词开始被医学界普遍接受。随着磁场强度更高的磁铁以及解剖、生理和光谱研究的改进,MR 应用的临床意义不断扩大。对软组织差异的高对比敏感度以及使用非电离辐射对患者的固有安全性是 MRI 取代许多 CT 和投影射线照相方法的主要原因。随着图像质量、采集方法和设备设计的不断改进,MRI 通常是检查患者解剖和生理特性的首选方式。但它也存在缺点,包括设备和选址成本高、扫描采集复杂、成像时间相对较长、图像伪影明显、患者幽闭恐惧症以及 MR 安全问题。本章回顾了磁学的基本特性、共振概念、组织磁化和弛豫事件、图像对比度的生成以及获取图像数据的基本方法。第 13 章讨论了高级脉冲序列、图像特征/伪影的说明、MR 波谱、MR 安全性和生物效应。
最近,扩散模型 (DM) 已应用于磁共振成像 (MRI) 超分辨率 (SR) 重建,并表现出令人印象深刻的性能,尤其是在细节重建方面。然而,当前基于 DM 的 SR 重建方法仍然面临以下问题:(1)它们需要大量迭代来重建最终图像,效率低下且消耗大量计算资源。(2)这些方法重建的结果通常与真实的高分辨率图像不一致,导致重建的 MRI 图像出现明显失真。为了解决上述问题,我们提出了一种用于多对比 MRI SR 的有效扩散模型,称为 DiffMSR。具体而言,我们在高度紧凑的低维潜在空间中应用 DM 来生成具有高频细节信息的先验知识。高度紧凑的潜在空间确保 DM 只需要几次简单的迭代即可产生准确的先验知识。此外,我们设计了 Prior-Guide Large Window Transformer (PLWformer) 作为 DM 的解码器,它可以扩展感受野,同时充分利用 DM 产生的先验知识,以确保重建的 MR 图像保持不失真。在公共和临床数据集上进行的大量实验表明,我们的 DiffMSR 1 优于最先进的方法。
大脑中线移位(MLS)是一种定性和定量的放射学特征,它可以衡量脑中线结构的横向移位,以响应由血肿,肿瘤,脓肿或任何其他占据脑膜内病变引起的质量效应。可以使用其他参数来确定神经外科干预的紧迫性,并预测占据病变的患者的临床结果。然而,由于跨病例的临床相关大脑结构的差异很大,因此精确检测和量化MLS可能具有挑战性。在这项研究中,我们通过使用分类和分割网络架构来研究了由病例级MLS检测以及脑部标记位置的初始定位以及对脑部标记位置的最初定位和完善的级联网络管道。我们使用3D U-NET进行初始定位,然后使用2D U-NET来估计更精确的分辨率的确切地标点。在改进步骤中,我们从多个切片中融合了预测,以计算每个地标的最终位置。,我们用大脑的解剖标记产生的高斯热图目标训练了这两个UNET。案例级别的地面真相标签和地标注释是由多个训练有素的注释者产生的,并由放射学技术人员和放射科医生进行了审查。我们提出的管道实现了使用2,545个头部非对比度计算的测试数据集在AUC中的情况级MLS检测性能
● 为一般和联邦机构的人工智能使用制定协调的指导方针和最佳实践(第 4.1(a)(i)、10.1、12(a)节)● 执法权:跨机构协调评估解决算法歧视的权力(第 7.1(a)(ii)节)● 关键基础设施:提供风险评估,开发相关工具,并将人工智能风险管理框架纳入相关安全指南(第 4.1(b)、4.3(a)节)● 安全:评估网络和生物安全工具,并为国家安全和人工智能治理提供指导(第 4.1-4.4、4.6-4.8 节)● 身份验证:为检测人工智能生成的内容和验证数字内容制定指南(第 4.5 节)● 创新与竞争:为外国人工智能专家提供签证/工作机会,实施国家人工智能研究资源,并优先考虑人工智能人才库和资金(第 5.1-5.3 10.2)● 劳工:提交有关人工智能市场影响的报告,发布雇主的最佳实践,并为承包商提供有关使用人工智能招聘的非歧视指导(第 6 条、7.3(a))● 公民权利:评估人工智能在刑事司法系统、公共福利系统、住房市场和招聘过程中的使用和潜在偏见;并发布关于承包商在招聘中不歧视的指导(第 7.1 至 7.3 节)● 签订合同:确保人工智能系统和服务的机构合同符合本行政令和适用法律(第 10.1(d)(ii) 节)● 医疗保健和教育:制定在医疗保健和教育领域部署人工智能的战略计划(第 8(b)、8(d) 节)● 隐私:审查使用相关隐私工具的机会(第 9 节)● 国际发展:与利益相关者协调人工智能标准(第 11 节)● 人工智能专家:每个机构必须指定一名个人担任首席人工智能官(第 10.1(b)(i) 节)
真菌内生菌在热带森林动力学中起着关键作用,通过生长刺激,疾病抑制,胁迫耐受性和营养动员而影响植物的影响。这项研究研究了热带植物中内生菌社区的区域,叶片发育阶段和组织类型的影响。年轻和成熟的叶子是从47种荒谬的物种中收集的,来自23种的sapwood,哥斯达黎加的高果实和瓜纳卡斯特的旧生长森林。真菌多样性和组成是通过对ITS2 nrDNA区域的质量编码进行评估的。最识别的ASV距离门comycota。diver命令是botryosphaeriales和glomerellales sig-nifimpy促进了内生构造的贡献,而无需检测到宿主特异性群落。我们观察到了各个地区的物种丰富度的显着差异,并通过β多样性确定了明显的组成。在成熟的叶组织和幼体叶组织之间没有发现统计学上的显着变化。相比之下,叶子比Sapwood表现出更丰富,更多样化的组合。随着植物在时间和空间中经历了不同的环境,我们的结果可能会因通过个体发育而改变结构和化学性质的影响。鉴于这些真菌对农业和森林生态系统的潜在影响,持续的研究对于辨别宿主,内生物和其他生态机制在明显的定殖模式中的作用至关重要。
深度预测是几种计算机视觉应用程序的核心,例如自动驾驶和机器人技术。通常将其作为回归任务进行表达,其中通过网络层估算深度阀。不幸的是,很少探索深度图上值的分布。因此,本文提出了一个新颖的框架,结合了对比度学习和深度预测,使我们能够更加关注深度分布,从而对整体估计过程进行改进。有意地提出了一个基于窗口的对比学习模块,该模块将特征映射划分为非重叠的窗口,并在每个窗口内构造对比损失。形成和排序正面和负对,然后在代表空间中扩大两者之间的间隙,约束深度分布以适合深度图的特征。对Kitti和NYU数据集的实验证明了我们框架的有效性。
来自多伦多大学多伦多大学玛格丽特公主医院医学成像联合部,加拿大M5G 2C1(又名R.H.,R.K.,R.K.,S.M.,C.O.,C.O.,U.M.,P.V.-H。);苏黎世苏黎世大学苏黎世大学苏黎世大学诊断与介入放射学研究所,瑞士(R.H.);多伦多大学多伦多大学玛格丽特癌症中心生物统计学系,加拿大M5G 2C1(L.A.);加拿大安大略省多伦多的安大略省癌症研究所/公主玛格丽特癌症中心大学卫生网络(M.T.,Q.L.);加拿大多伦多大学大学卫生网络辐射肿瘤学系(A.H.)。收到2023年12月11日;修订于2024年1月18日; 2024年1月23日接受。地址为:K.A。电子邮件:andres.kohan@uhn.ca电子邮件:andres.kohan@uhn.ca
比特币的能源使用在学者,从业者和公众之间进行了争论。这场辩论通常是有偏见和特征的。因此,我以讨论比特币的基本原理的讨论开始了本文,其中包括广泛持有的误解。接下来,我说明了比特币与能量的关系并描述潜在的激励机制。在论文的主体中,我讨论了比特币能源使用的各种组成部分,包括能量的数量,组成和地理分歧,以及出现的积极和负面影响。然后将这些组件合并为一个综合框架,为未来的学术研究提供了坚实的基础,并为从业者提供了有关如何以及为什么比特币需要能量以及是否可以从环境角度进行理由的全局。
摘要 — 基于 SSVEP 的 BCI 在速度和准确性方面是最有前途的 BCI 之一。然而,尽管社区付出了巨大的努力使它们更加实用和用户友好,但它们使用起来仍然特别烦人。在本文中,我们研究了 SSVEP 视觉刺激的大小和对比度对分类准确性和界面烦恼的影响,总体目标是在性能和用户友好性之间找到一个平衡点。我们对十二 (12) 名参与者进行了用户研究,以评估不同刺激大小和对比度对虚拟现实环境中 SSVEP 分类准确性的联合影响。该实验的结果表明,刺激的大小对分类准确性(低于某个阈值)和感知烦恼都有显著影响。然而,对比度对分类准确性和感知烦恼都没有影响,这表明使用较低对比度的刺激仍然可以准确地操作基于 SSVEP 的 BCI。索引术语 — 组件、格式、样式、样式、插入