分化的甲状腺癌(DTC)(1)包括乳头状甲状腺癌(PTC),卵泡甲状腺癌(FTC)及其变异亚型(2),是最常见的内分泌恶性肿瘤,并且最近几年的发病率迅速增加。DTC通常具有良好的预后,碘131治疗和甲状腺抑制剂已被证明对10年生存率的患者有益,范围为80%至95%(3,4)。然而,大约5%-20%的病例可能由于基因突变引起的肿瘤生物学变异,导致不同的亚型和预后不良,这可能与高度浸润性肿瘤的生物学特征有关(5)。因此,甲状腺结节的鉴别诊断仍然很明显。对比增强超声(CEU)可以实时评估组织的微循环灌注(6),提供准确可靠的数据,并且可以避免由个体差异引起的诊断错误(7)。由于甲状腺正常组织中的微容器的丰度,它显示出造影剂后的快速和均匀增强。然而,甲状腺结节具有不同的血管生成模式,并且CEUS上的表现可能不同(8)。先前的研究报道了甲状腺结节的CEUS特征,但是,大多数是基于结节内部(9-11),而CEUS上甲状腺结节的增强模式仍然没有足够的能力来诊断甲状腺癌(12)。到目前为止,只有一项研究重点介绍了结节周围区的CEU特征(13)。这项研究的目的是通过研究甲状腺结节的内部和外围区域的定性和定量参数来评估CEU在DTC的鉴别诊断中的价值。
深度神经网络的最新进展成功地改善了各种学习问题[40,8,26,19,20]。但是,对于监督学习,大量的训练数据仍然是学习准确的深层模型的关键。尽管可能可用于一些预先规定的域,例如ImageNet [7],但对于每个临时目标域或任务而言,手动标签通常很难或昂贵。缺少IN-ININAIN标记的数据阻碍了在许多实际问题中拟合模型的应用。在没有来自目标域的标记数据的情况下,已经出现了无监督的域适应(UDA)方法,以减轻数据分布的域移动[2,1,1,5,37,30,18,3,3,17]。它与无监督的学习有关,因为它仅需要从源域和目标域的零标签手动标签。在最近关于UDA的工作,这是Long等人提出的开创性工作。[22,25]旨在最大程度地减少深神经网络中源和目标域之间的差异,在此,在该网络中,域差异通过最大值
本文研究了一种联合估计基于能量的模型和基于流的模型的训练方法,其中两个模型基于共享的对抗值函数进行迭代更新。该联合训练方法具有以下特点:(1)基于能量的模型的更新基于噪声对比估计,流模型作为强噪声分布。(2)流模型的更新近似地最小化了流模型与数据分布之间的 Jensen-Shannon 散度。(3)与生成对抗网络(GAN)估计由生成器模型定义的隐式概率分布不同,我们的方法估计数据上的两个显式概率分布。使用所提出的方法,我们证明了流模型的综合质量的显著改进,并展示了通过学习到的基于能量的模型进行无监督特征学习的有效性。此外,所提出的训练方法可以轻松适应半监督学习。我们取得了与最先进的半监督学习方法相媲美的成果。
a 摩洛哥拉巴特国际大学工程与建筑学院 TICLab b 法国巴黎理工学院巴黎电信 LTCI c 美国马里兰州阿德尔菲美国陆军研究实验室
最近,几种方法探索了多对比磁共振成像(MRI)超分辨率(SR)的潜力,并获得了优于单对比SR方法的结果。但是,现有方法仍然存在两个缺点:(1)它们只能解决固定的Inter Intermpling量表,例如2×,3×和4倍,它们需要培训并存储临床上每个UPSMPLAING SCALE的相应模型。(2)他们在采用方形窗口(例如8×8)变形金刚网络档案时缺乏直接交互,这导致长范围依赖性的建模不足。此外,参考图像和目标图像之间的关系尚未完全挖掘。为了解决这些问题,我们开发了一个新颖的网络,用于多对比度MRI任意规模的SR,被称为McASSR。具体来说,我们设计了矩形窗口交叉注意变压器,以在MR图像中建立长期依赖性,而无需增加计算复杂性并完全使用参考信息。此外,我们提出了参考吸引的隐式关注,作为提升的模式,通过隐式神经表示实现了任意规模的超分辨率,进一步融合了参考图像的补充信息。在公共和临床数据集上进行了广泛而全面的实验表明,我们的MCASSR比SOTA方法产生了卓越的性能,这表明其在临床实践中的巨大潜力。代码将在https://github.com/guangyuankk/mcassr上找到。
真菌内生菌在热带森林动力学中起着关键作用,通过生长刺激,疾病抑制,胁迫耐受性和营养动员而影响植物的影响。这项研究研究了热带植物中内生菌社区的区域,叶片发育阶段和组织类型的影响。年轻和成熟的叶子是从47种荒谬的物种中收集的,来自23种的sapwood,哥斯达黎加的高果实和瓜纳卡斯特的旧生长森林。真菌多样性和组成是通过对ITS2 nrDNA区域的质量编码进行评估的。最识别的ASV距离门comycota。diver命令是botryosphaeriales和glomerellales sig-nifimpy促进了内生构造的贡献,而无需检测到宿主特异性群落。我们观察到了各个地区的物种丰富度的显着差异,并通过β多样性确定了明显的组成。在成熟的叶组织和幼体叶组织之间没有发现统计学上的显着变化。相比之下,叶子比Sapwood表现出更丰富,更多样化的组合。随着植物在时间和空间中经历了不同的环境,我们的结果可能会因通过个体发育而改变结构和化学性质的影响。鉴于这些真菌对农业和森林生态系统的潜在影响,持续的研究对于辨别宿主,内生物和其他生态机制在明显的定殖模式中的作用至关重要。
深度预测是几种计算机视觉应用程序的核心,例如自动驾驶和机器人技术。通常将其作为回归任务进行表达,其中通过网络层估算深度阀。不幸的是,很少探索深度图上值的分布。因此,本文提出了一个新颖的框架,结合了对比度学习和深度预测,使我们能够更加关注深度分布,从而对整体估计过程进行改进。有意地提出了一个基于窗口的对比学习模块,该模块将特征映射划分为非重叠的窗口,并在每个窗口内构造对比损失。形成和排序正面和负对,然后在代表空间中扩大两者之间的间隙,约束深度分布以适合深度图的特征。对Kitti和NYU数据集的实验证明了我们框架的有效性。
来自多伦多大学多伦多大学玛格丽特公主医院医学成像联合部,加拿大M5G 2C1(又名R.H.,R.K.,R.K.,S.M.,C.O.,C.O.,U.M.,P.V.-H。);苏黎世苏黎世大学苏黎世大学苏黎世大学诊断与介入放射学研究所,瑞士(R.H.);多伦多大学多伦多大学玛格丽特癌症中心生物统计学系,加拿大M5G 2C1(L.A.);加拿大安大略省多伦多的安大略省癌症研究所/公主玛格丽特癌症中心大学卫生网络(M.T.,Q.L.);加拿大多伦多大学大学卫生网络辐射肿瘤学系(A.H.)。收到2023年12月11日;修订于2024年1月18日; 2024年1月23日接受。地址为:K.A。电子邮件:andres.kohan@uhn.ca电子邮件:andres.kohan@uhn.ca
比特币的能源使用在学者,从业者和公众之间进行了争论。这场辩论通常是有偏见和特征的。因此,我以讨论比特币的基本原理的讨论开始了本文,其中包括广泛持有的误解。接下来,我说明了比特币与能量的关系并描述潜在的激励机制。在论文的主体中,我讨论了比特币能源使用的各种组成部分,包括能量的数量,组成和地理分歧,以及出现的积极和负面影响。然后将这些组件合并为一个综合框架,为未来的学术研究提供了坚实的基础,并为从业者提供了有关如何以及为什么比特币需要能量以及是否可以从环境角度进行理由的全局。
摘要 — 基于 SSVEP 的 BCI 在速度和准确性方面是最有前途的 BCI 之一。然而,尽管社区付出了巨大的努力使它们更加实用和用户友好,但它们使用起来仍然特别烦人。在本文中,我们研究了 SSVEP 视觉刺激的大小和对比度对分类准确性和界面烦恼的影响,总体目标是在性能和用户友好性之间找到一个平衡点。我们对十二 (12) 名参与者进行了用户研究,以评估不同刺激大小和对比度对虚拟现实环境中 SSVEP 分类准确性的联合影响。该实验的结果表明,刺激的大小对分类准确性(低于某个阈值)和感知烦恼都有显著影响。然而,对比度对分类准确性和感知烦恼都没有影响,这表明使用较低对比度的刺激仍然可以准确地操作基于 SSVEP 的 BCI。索引术语 — 组件、格式、样式、样式、插入