虽然小海王星样行星是最丰富的系外行星之一,但我们对它们大气结构和动态的理解仍然很少。尤其是,关于潮湿对流在这些大气中的工作方式,在这些气氛中,可凝度的物种比不可固定的背景气体重。虽然已经预测,潮湿对流可能会停止以上这些可凝结物种的阈值丰度,但该预测基于简单的线性分析,并依赖于关于大气饱和的一些有力的假设。为了调查这个问题,我们开发了一个3D云分辨模型,用于具有大量可冷凝物种的氢气大气,并将其应用于原型的温带Neptune样星球 - K2-18 b。我们的模型证实了在可凝结蒸气的临界丰度之上抑制湿对流的抑制作用,以及在此类行星大气中稳定分层层的发作,这导致了更热的深层气氛和内部。我们的3D模拟进一步提供了该稳定层中湍流混合的定量估计,这是大气中浓缩物循环的关键驱动力。这使我们能够构建一个非常简单但逼真的1D模型,该模型捕获了Neptune类气氛结构的最显着特征。我们关于氢气中潮湿对流行为的定性发现超出了温带行星,还应适用于铁和硅酸盐在氢压行星深内部的凝聚的区域。我们发现地球需要具有很高的反照率(a>0。5--0。最后,我们使用模型研究了K2-18 b上H 2域大气下的液体海洋的可能性。6)维持液态海洋。但是,由于恒星的光谱类型,提供如此高的反照率所需的气溶胶散射量与最新的观测数据不一致。
在 60 年代末和 70 年代初,人们意识到需要可重复使用的隔热罩来为航天飞机轨道器系统提供热保护。因此,艾姆斯研究中心着手开展一项计划,以开发可重复使用的陶瓷纤维绝缘技术的内部能力。多年来,艾姆斯研究中心一直是美国领先的隔热罩材料气动对流测试中心之一,使用我们广泛的电弧等离子体测试设施(参考文献 1)。为了促进这种新材料的开发(预计用于航天飞机),我们认为了解材料特性和制造工艺非常重要。随着我们内部能力的提高,我们将目标扩大到开发耐高温、更耐用、更坚固、更坚硬和更柔韧的陶瓷隔热罩材料。到 20 世纪 70 年代中期,该计划带来了重大的新材料开发。其中包括改进的涂层(参考文献 2)、更坚固、更耐高温的瓷砖材料(参考文献 3)以及对材料空气对流和机械测试的支持技术的大量贡献(参考文献 4)。
摘要 - 本文为全球主要机场的天气相关空中交通管理(ATM)挑战的系统比较开发了一个通用框架,并将其应用于美国和欧洲的特定设施。使用气象和操作数据库,我们将提出的框架应用于客观地比较和对比模式,以说明:(i)操作挑战性的天气条件的类型,严重性和频率,例如对流风暴,风,天花板,可见度以及影响机场运营的降水量; (ii)由此产生的天气驱动需求/容量不平衡特征; (iii)战略和战术ATM响应以及由此产生的延迟特征。初步结果表明,美国机场经历了更高的对流风暴频率,导致更大的操作中断,而欧洲机场则受到低知名度事件的影响,这些事件在性能指标中起着更大的作用。本文以该框架的应用和提议的未来工作来为研发工作,促进最佳实践并增强ATC的协调而提出的工作中获得的见解总结结束。
更远的地方是太阳对流区,能量以湍流翻腾运动的形式传输,类似于一锅沸腾的汤。可见表面,即光球层,厚度只有约 400 公里。在光球层上方,我们发现了色球层,这是一层薄薄的热气体,延伸至几千公里。在色球层上方是日冕,即太阳大气的最外层。
背景。在恒星对流区中,运动粘度与热扩散率之比,即普朗特数,远小于 1。目的。这项工作的主要目标是研究对流流动和能量传输的统计数据与普朗特数的关系。方法。采用笛卡尔几何中可压缩非旋转流体动力对流的三维数值模拟。对流区 (CZ) 位于两个稳定分层的层之间。在大多数情况下,熵波动扩散的主要贡献来自亚网格尺度扩散率,而平均辐射能量通量则由采用 Kramers 不透明度定律的扩散通量介导。在这里,我们分别研究上流和下流的统计和传输特性。结果。体积平均均方根速度随普朗特数的减小而增加。同时,下行流的填充因子会降低,导致在较低的普朗特数下,下行流平均会更强。这导致对流过冲对普朗特数有很强的依赖性。速度功率谱不会随着普朗特数的变化而发生明显变化,但对流层底部附近除外,因为那里垂直流占主导地位更为明显。在最高雷诺数下,速度功率谱与 Bolgiano-Obukhov k − 11 / 5 的兼容性比与 Kolmogorov-Obukhov k − 5 / 3 的兼容性更好
摘要:太阳池是一种人工池塘,由于防止对流,其底部温度明显升高。池塘中使用盐水来防止对流。这些池塘被称为“盐梯度太阳池”。在过去的 15 年里,许多国家都建造了许多大小不一的盐梯度太阳池,面积从数百到数千平方米不等。如今,还建造了微型太阳能凉亭用于不同的热应用。本项目工作建立了一个具有更好绝缘性、透明顶盖和改进的吸收涂层的太阳池系统。在不同水平测量了池塘的温度,并与其他工作进行了比较。在这项工作中,观察了不同盐度水平下的太阳池性能。可以看出,储存区发生的最高温度随着盐度的增加而增加。池塘也用作储存。这是因为储存区的温度在一天结束时达到最大值,太阳强度各不相同。因此,太阳池也适用于漫射辐射。当前系统的性能优于以前的工作。存储区产生的最高温度高于之前研究的最高温度。这表明系统的传热性能优异
Ulavathi S. Mahabaleshwar ca 乌克兰国家科学院单晶体研究所,Nauky Ave. 60,哈尔科夫 31001,乌克兰 b VN Karazin 哈尔科夫国立大学 4,Svoboda Sq.,哈尔科夫,61022,乌克兰 c 达万格雷大学 Shivagangotri 数学系,达万格雷,印度 577 007 *通讯作者:michaelkopp0165@gmail.com 收到日期:2022 年 9 月 23 日;修订日期:2022 年 10 月 30 日;接受日期:2022 年 11 月 3 日 纳米流体和微生物饱和的多孔介质中的热对流研究是许多地球物理和工程应用的重要问题。纳米流体和微生物混合物的概念引起了许多研究人员的兴趣,因为它能够改善热性能,从而提高传热速率。此特性在电子冷却系统和生物应用中都得到了广泛的应用。因此,本研究的目的是研究在垂直磁场存在下,多孔介质中的生物热不稳定性,该介质被含有旋转微生物的水基纳米流体饱和。考虑到自然和技术情况下都存在外部磁场,我们决定进行这项理论研究。使用 Darcy-Brinkman 模型,对自由边界的对流不稳定性进行了线性分析,同时考虑了布朗扩散和热泳动的影响。使用 Galerkin 方法进行这项分析研究。我们已经确定传热是通过没有振荡运动的稳态对流完成的。在稳态对流状态下,分析了金属氧化物纳米流体(Al 2 O 3 )、金属纳米流体( Cu 、Ag)和半导体纳米流体( TiO 2 、SiO 2 )。增加钱德拉塞卡数和达西数可显著提高系统稳定性,但增加孔隙度和改变生物对流瑞利-达西数会加速不稳定性的开始。为了确定热量和质量传输的瞬态行为,应用了基于傅里叶级数表示的非线性理论。在较短的时间间隔内,过渡的努塞尔特数和舍伍德数表现出振荡特性。时间间隔内的舍伍德数(质量传输)比努塞尔特数(热传输)更快达到稳定值。这项研究可能有助于海洋地壳中的海水对流以及生物传感器的构造。关键词:纳米流体、生物热对流、洛伦兹力、热泳动、布朗运动、旋转微生物、磁场 PACS:44.10.+i、44.30.+v、47.20.-k 1. 简介 土力学、地下水水文学、石油工程、工业过滤、粉末冶金、核能等领域的许多理论和实践研究都是基于对多孔介质流动物理学的研究。石油工程师和地球物理流体动力学家对多孔介质中的此类流动非常感兴趣。多孔介质中液层的热不稳定性问题尤为重要。Ingham 和 Pop [1] 以及 Nield 和 Bejan [2] 对大多数多孔介质对流研究进行了出色的综述。Vadasz [3] 在最近的一篇综述中详细研究了旋转多孔介质中的流体流动和传热问题。随着纳米技术的进步,尺寸小于一百纳米的物体已经发展起来。这种纳米尺寸的物体称为纳米颗粒。Choi [4] 建议将这些纳米颗粒悬浮在基液(称为纳米流体)中,以提高基液的导热性和对流传热。因此,纳米流体开始在工业中得到广泛应用,例如冷却剂、润滑剂、热交换器、微通道散热器等等。 Buongiorno [5] 广泛研究了纳米流体中的对流输送,并致力于解释在对流下观察到的额外传热增加。Tzou [6] 使用 Buongiorno 传输方程研究了纳米流体在从下方均匀加热的水平层中对流的开始,发现由于纳米颗粒的布朗运动和热泳动,临界瑞利数比普通流体低一到两个数量级。由于纳米流体在传热现象中具有显著的特性,因此需要研究多孔介质中的纳米流体。Kuznetsov 和 Nield [7]-[8] 使用 Brinkman 模型研究了充满纳米流体的多孔介质中热不稳定性开始的情况,其中考虑了布朗运动和纳米颗粒热泳动。他们发现,纳米颗粒的存在可能会显著降低或增加临界热瑞利数,这取决于基本纳米颗粒分布是上重还是下重。此外,Bhadauria 和 Agarwal [9] 以及 Yadav 等人 [10] 扩展了热不稳定性问题,包括纳米流体的应用十分广泛,例如润滑剂、热交换器、微通道散热器等等。Buongiorno [5] 广泛研究了纳米流体中的对流输送,并着重解释对流下观察到的额外传热增加。Tzou [6] 使用 Buongiorno 传输方程研究了纳米流体在从下方均匀加热的水平层中对流的开始,发现由于纳米颗粒的布朗运动和热泳动,临界瑞利数比普通流体低一到两个数量级。由于纳米流体在传热现象中具有显著的特性,因此需要研究多孔介质中的纳米流体。Kuznetsov 和 Nield [7]-[8] 使用 Brinkman 模型研究了饱和纳米流体的多孔介质中热不稳定性他们发现,纳米颗粒的存在可能会显著降低或增加临界热瑞利数,这取决于基本纳米颗粒分布是上重还是下重。此外,Bhadauria 和 Agarwal [9] 以及 Yadav 等人 [10] 扩展了热不稳定性问题,包括纳米流体的应用十分广泛,例如润滑剂、热交换器、微通道散热器等等。Buongiorno [5] 广泛研究了纳米流体中的对流输送,并着重解释对流下观察到的额外传热增加。Tzou [6] 使用 Buongiorno 传输方程研究了纳米流体在从下方均匀加热的水平层中对流的开始,发现由于纳米颗粒的布朗运动和热泳动,临界瑞利数比普通流体低一到两个数量级。由于纳米流体在传热现象中具有显著的特性,因此需要研究多孔介质中的纳米流体。Kuznetsov 和 Nield [7]-[8] 使用 Brinkman 模型研究了饱和纳米流体的多孔介质中热不稳定性他们发现,纳米颗粒的存在可能会显著降低或增加临界热瑞利数,这取决于基本纳米颗粒分布是上重还是下重。此外,Bhadauria 和 Agarwal [9] 以及 Yadav 等人 [10] 扩展了热不稳定性问题,包括
During the Terrain-Influenced Monsoon Rainfall Experiment (TiMREX), which coincided with Taiwan's Southwesterly Monsoon Experiment—2008 (SoWMEX-08), the upper-air sounding network over the Taiwan region was enhanced by increasing the radiosonde (‘‘sonde'') frequency at its operational sites and by adding several additional sites (three that were land based and two that were ship基于)和飞机Dropsondes。在Timrex的特殊观察期(2008年5月15日至6月25日)中,2330辐射观测成功地从增强的网络中获取。处理来自13个Upsonde站点的数据的挑战的一部分是,使用了四种不同的SONDE类型(Vaisala RS80,Vaisala RS92,Meisei和Graw)。对SONDE数据的后期分析表明,在许多SONDES中,尤其是在Vaisala rs80 rs80 sondes的数据中存在显着的干偏见,这些数据在四个地点使用。此外,船舶结构对SONDE数据的污染导致在关键海洋部位的低质量低级热力学数据。本文研究了用于质量控制SONDE数据的方法,并在可能的情况下纠正它们。特别注意校正湿度场及其对各种对流措施的影响。对校正后的SONDE湿度数据与独立估计的比较表明良好的一致性,表明校正有效地消除了许多SONDE湿度错误。检查对流的各种措施表明,使用湿度校正的SONDES对TIMREX期间对流的特征有很大不同的观点。例如,在RS80站点,使用校正的湿度数据的使用增加了平均斗篷; 500 j kg 2 1,平均对流率(CIN)降低80 j kg 2 1,并使中级对流质量流量增加了70%以上。最终,这些校正将为诊断分析和建模研究提供更准确的水分领域。