1. 按正确顺序说出构成大气层的四个层级(对流层、平流层、中间层和热层)。2. 找出大气层不同层级之间的过渡区域(对流层顶、平流层顶和中间层顶)。3. 结合主要气体及其相对丰度,描述大气层的化学成分。仅限于对流层。4. 描述温度如何随海拔高度变化,从而导致大气层结。5. 画出大气层的温度剖面图。6. 解释电磁波谱是一段以相同速度传播,但频率、波长和能量不同的连续辐射。7. 结合入射辐射和出射辐射之间的平衡,描述地球的能量收支。仅限于定性分析。8. 解释反照率以及不同表面和环境的反照率有何不同。9. 简述全球大气环流模式如何分配太阳辐射。10. 认识哈德利环流、费雷尔环流和极地环流的重要性。 11. 解释自然温室效应。12. 描述自然温室效应如何维持适宜生命生存的温度。
与其IRF值保持不变; RF LW为3.8 w m 2,比IRF LW高。因此,Hansen等人。(1981)发现,根据是否考虑了RF还是IRF,净强度为2.6%或4%的净强度(LW + SW)。CO 2 IRF SW在ERF框架中重新出现的观点,该框架采用TOA的视角(例如,图。Ramaswamy等人的14-6,2018)。 相比之下,Cess等人。 (1993)报告说,CO 2 IRF SW为负,约占IRF LW的6%(用于330 ppm的doubl)。 这种观点已经建立,尽管并非所有研究都发现了负面的CO 2 tropo-pause irf SW(Forster等,2001)。 明显的障碍是因为Cess等人。 (1993)定义在对流层面上的强迫; Hansen等。 (1981)选择TOA。 这仍然留下一个问题,即哪种观点最有价值,以及它们是否可以和解。 Myhre等。 (1998)还发现,RF LW的CO 2(0.11 w m 2)的CO 2为负IRF SW,从278 ppm增加了一倍。 然而,在这里很重要的是,额外的SW吸收温暖了平流层(与仅LW的情况相关)。 在RF框架中,Myhre等人。 (1998)计算出这种变暖导致对流层顶RF LW(0.05 W m 2);因此,由于SW强迫引起的净RF(0.06 W m 2)约为IRF SW的一半。 对于增加平流层H 2 O的浓度,Forster和Shine(2002)(另见Forster等,2001; Myhre等,2007,2009)发现了Tropapause irf SW,占RF LW的20%。 Etminan等。Ramaswamy等人的14-6,2018)。相比之下,Cess等人。(1993)报告说,CO 2 IRF SW为负,约占IRF LW的6%(用于330 ppm的doubl)。这种观点已经建立,尽管并非所有研究都发现了负面的CO 2 tropo-pause irf SW(Forster等,2001)。明显的障碍是因为Cess等人。(1993)定义在对流层面上的强迫; Hansen等。(1981)选择TOA。 这仍然留下一个问题,即哪种观点最有价值,以及它们是否可以和解。 Myhre等。 (1998)还发现,RF LW的CO 2(0.11 w m 2)的CO 2为负IRF SW,从278 ppm增加了一倍。 然而,在这里很重要的是,额外的SW吸收温暖了平流层(与仅LW的情况相关)。 在RF框架中,Myhre等人。 (1998)计算出这种变暖导致对流层顶RF LW(0.05 W m 2);因此,由于SW强迫引起的净RF(0.06 W m 2)约为IRF SW的一半。 对于增加平流层H 2 O的浓度,Forster和Shine(2002)(另见Forster等,2001; Myhre等,2007,2009)发现了Tropapause irf SW,占RF LW的20%。 Etminan等。(1981)选择TOA。这仍然留下一个问题,即哪种观点最有价值,以及它们是否可以和解。Myhre等。 (1998)还发现,RF LW的CO 2(0.11 w m 2)的CO 2为负IRF SW,从278 ppm增加了一倍。 然而,在这里很重要的是,额外的SW吸收温暖了平流层(与仅LW的情况相关)。 在RF框架中,Myhre等人。 (1998)计算出这种变暖导致对流层顶RF LW(0.05 W m 2);因此,由于SW强迫引起的净RF(0.06 W m 2)约为IRF SW的一半。 对于增加平流层H 2 O的浓度,Forster和Shine(2002)(另见Forster等,2001; Myhre等,2007,2009)发现了Tropapause irf SW,占RF LW的20%。 Etminan等。Myhre等。(1998)还发现,RF LW的CO 2(0.11 w m 2)的CO 2为负IRF SW,从278 ppm增加了一倍。然而,在这里很重要的是,额外的SW吸收温暖了平流层(与仅LW的情况相关)。在RF框架中,Myhre等人。(1998)计算出这种变暖导致对流层顶RF LW(0.05 W m 2);因此,由于SW强迫引起的净RF(0.06 W m 2)约为IRF SW的一半。对于增加平流层H 2 O的浓度,Forster和Shine(2002)(另见Forster等,2001; Myhre等,2007,2009)发现了Tropapause irf SW,占RF LW的20%。Etminan等。Etminan等。(2016)提出了甲烷的IRF SW计算; Tropopause IRF SW(750 - 1800 PPB扰动)为正,占总强度的6%;考虑平流层变暖的影响
长时间气球任务是科学研究和空间技术开发的重要平台。这种系统的热分析对于任务的成功至关重要。尽管科学研究通常在漂浮高度进行,但上升阶段通常不进行操作,而上升阶段会出现极冷条件,这是由于相对风速引起的对流效应以及对流层顶的低温,使这种情况成为一个典型案例。本文对上升过程中的热环境条件进行了深入研究,特别是获得了风、温度和辐射热负荷与高度的关系。该研究基于从不同来源获得的真实数据,包括大气探测、雷达和卫星,以及细致的统计处理。这项研究的重点是欧洲主要的平流层气球发射场之一 Esrange(瑞典),这是瑞典航天公司的中心,分析是在夏季进行的。但是,该方法可以扩展到任何其他位置和时期。例如,研究了水平风对平板的对流效应,并量化了上升阶段的热传递。在这种情况下发现过冷度约为 7 °C,这值得进行专门的分析。
平流层吸收太阳辐射的有害部分,从而保护地球表面的生命(以目前的形式)。由于人为排放臭氧消耗物质(ODS,如氟利昂),平流层臭氧层一直处于危险之中。由于《蒙特利尔议定书》(1987 年,以及随后的修订和调整)缔约方采取的行动,臭氧层有望在未来几十年内恢复。我们呼吸的空气中的臭氧是大都市地区的主要空气污染物,被称为光化学烟雾,臭氧是决定大气氧化能力的主要物质,参与从对流层空气中去除许多化合物(包括有毒物质)的过程。最后但并非最不重要的是,对流层顶区域的臭氧是一种强温室气体。为了研究这些重要问题,可靠的现场测量非常重要。世界气象组织 (WMO) 全球大气监测 (GAW) 计划的主要内容之一是利用相对小巧轻便的气球(臭氧探空仪)进行测量,这些气球可提供臭氧的垂直分布数据,而这些数据对于了解臭氧在大气中发挥的关键作用至关重要。臭氧探空仪的定期测量始于 20 世纪 60 年代后半期,当时只有少数几个
在三种最先进的气候模型中分析了从SSP5-8.5扩展方案中全球变暖至2300的极端情况,其中包括两个具有气候灵敏度大于4.5°C的模型。结果是在历史记录和未来的模拟中看到的一些最大的变暖量。模拟显示在前工业和23世纪末之间的9.3至17.5°C全球平均温度变化之间。全球温度的极大变化允许在气候动态中探索基本问题,例如确定水分和能量传输及其与全球大气 - 海洋循环的关系。三个模型进行了SSP5-8.5至2300的模拟:MRI-ESM2-0,IPSL-CM6A-LR和CANESM5。我们分析了这些模拟,以提高人们对气候动态的理解,而不是为期货。在具有最变暖的,Canesm5的模型中,地球的水分含量超过双倍,并且水文循环的强度增加。在CANESM5和IPSL-CM6A-LR中,几乎所有海冰在夏季和冬季都在两个半球中都消除了。在所有三个型号中,哈德利循环都会削弱,对流层顶的高度上升,风暴轨道在不同程度上移动了极点。我们使用扩散框架分析模拟中潮湿的静态传输。干燥的静态通量减小以补偿增加的水分传输;但是,补偿是不完美的。总大气转运的增加,但没有恒定扩散率的速度。涡流强度的降低在确定能量传输方面起着重要作用,云反馈的模式和海洋循环的强度也是如此。
臭氧污染可能将灌溉的好处限制为印度的小麦生产力,在印度Gabriella Everett,ØivindHodnebrog,Madhoolika Agrawal,Durgesh Singh Yadav,Connie O'Neill,Chubamenla Jamir,Jo Cook,Pritha Pande,Pritha Pande,Pritha Pande和Lisa Emberson Egusphere [Preppred epprint] https://doi.org/10.5194/egusphere-2024-3371讨论于2024年11月15日开始讨论,讨论于2025年1月24日结束,该评论是由Toar-II社区特殊问题的Toar Scientific Socordinator Owen Cooper撰写的。i或TOAR-II指导委员会的成员,将对提交给Toar-II社区特刊的所有论文发表评论,这是一个杂志间专刊,可容纳六本哥白尼期刊的提交:ACP(主要期刊),AMT,AMT,GMD,GMD,ESSD,ASSD,ASCMO和BG。这些评论的主要目的是确定TOAR-II提交的任何差异,并让作者团队有时间解决差异。评论中可能包括其他评论。O. Cooper和Toar指导委员会的成员可能会对提交给Toar-II社区特刊的论文发表公开评论,但他们不参与接受或拒绝发表论文的决定,该论文完全由期刊的社论团队处理。有关TOAR-II指南的评论:Toar-II制作了两个指导文件,以帮助作者制定手稿,以便可以在将为Toar-II社区特殊问题上编写的广泛研究中进行一致比较结果。范围包括报告趋势的方法,对常用技术的优势和劣势的讨论以及不确定性交流的校准语言。Both guidance documents can be found on the TOAR-II webpage: https://igacproject.org/activities/TOAR/TOAR-II The TOAR-II Community Special Issue Guidelines : In the spirit of collaboration and to allow TOAR-II findings to be directly comparable across publications, the TOAR-II Steering Committee has issued this set of guidelines regarding style, units, plotting scales,区域和对流层比较以及对流层顶定义。TOAR-II的统计分析建议:本指南的目的是提供有关最佳统计实践的建议,并确保在TOAR出版物中持续统计分析和相关的不确定性进行持续的沟通。TOAR-II统计指南的表3提供了用于描述趋势和不确定性的校准语言,类似于IPCC的方法,IPCC的方法允许讨论趋势,而不必使用有问题的表达方式“统计学意义”。