仅给健康动物接种疫苗。疫苗接种对感染的进一步阶段、已形成的淋巴结脓肿的破裂、随后的带菌者身份的流行、杂种马鼻疽(转移性脓肿)、出血性紫癜和肌炎以及恢复的影响尚不清楚。已证明,疫苗可减轻单匹马在感染急性期的临床症状。接种疫苗的马匹可能会感染并排出马链球菌。目前没有关于在血清阳性动物(包括具有母源抗体的动物)中使用该疫苗的信息。无论是否接种了本产品,都应将限制马链球菌感染在场所内引入和传播风险的生物安全程序作为管理工具的一部分。4.5 特殊使用预防措施 动物使用特殊预防措施 经测试,该疫苗可安全用于 5 月龄以上的马匹。给动物注射兽药的人员应采取的特殊预防措施 如不慎自我注射,应立即就医并向医生出示包装说明书或标签。 可能会发生过敏反应。对症治疗。 4.6 不良反应(频率和严重程度) 接种疫苗后,体温短暂升高高达 2.6°C,持续 1 至 5 天是很常见的。注射部位很常见短暂的局部组织反应,其特征是发热、疼痛和肿胀(直径约 5 厘米),持续长达五天。在第二次主要剂量和后续剂量后,注射部位反应的频率更加明显,并且可能出现直径高达 8 厘米的肿胀。一天内食欲不振和举止改变是常见的。接种疫苗后 1 至 5 天内,双眼经常出现眼部分泌物,可能是粘液脓性分泌物。极少数情况下会出现类似过敏反应。不良反应发生的频率采用以下惯例定义: - 非常常见 (每 10 只接受治疗的动物中超过 1 只出现不良反应) - 常见 (每 100 只接受治疗的动物中超过 1 只但少于 10 只动物) - 不常见 (每 1,000 只接受治疗的动物中超过 1 只但少于 10 只动物) - 罕见 (每 10,000 只接受治疗的动物中超过 1 只但少于 10 只动物) - 非常罕见 (每 10,000 只动物中少于 1 只动物,包括个别报告) 4.7 怀孕、哺乳或非怀孕期间使用怀孕和哺乳:
研究主题“传染病中的纳米医学:药物输送和疫苗”重点关注纳米制剂在输送候选疫苗和药物以开发针对传染病的干预方法中的作用。它包括八篇原创文章和评论文章。传染病,例如由结核分枝杆菌 (Mtb) 引起的传染病结核病 (TB),是发展中国家死亡率上升的主要原因之一。将药物输送到疾病部位是实现其治疗效果的挑战。因此,人们一直在努力使用基于脂质的纳米级药物输送系统 (NDDS) 来增强药物并使其在疾病部位可用。基于纳米载体的疗法有助于克服用于开发针对结核病的治疗干预措施的几种药物的毒性和溶解度差的问题(Rajput 等人)。多种纳米级载体及其在药物和疫苗输送中的应用,以及它们如何进化以克服与持续和目标特定输送、稳定性、耐久性、功效和生物分布相关的挑战。它们还能使药物被活性巨噬细胞吸收(Rajput 等人),而活性巨噬细胞被用作纳米载体主动和被动靶向的靶位。纳米载体与目标特定配体锚定,以持续和目标特定输送药物和抗原,从而有效输送(Limocon 等人)。这些配体锚定的纳米载体由壳聚糖制成,可局部和全身提高药物浓度,这种输送系统介导的药物输送增加了治疗结核病的潜力(Limocon 等人)。醋氯芬酸 (ACE) 是一种环氧合酶 2 抑制剂,是双氯芬酸类衍生物,用于全身炎症性自身免疫性疾病、类风湿性关节炎 (RA) 的对症治疗。部分溶解性、高亲脂性和稳定性问题对外用制剂的开发提出了挑战。因此,Garg 等人开发并表征了基于纳米结构脂质载体 (NLC) 的 ACE (ACE-NLC) 水凝胶,以实现有效的透皮给药。使用不同的脂质通过各种方法制备 NLC 微乳剂,并根据粒度、电位、表面形貌和药物包封率进行表征(Garg 等人)。将优化的 NLC 配方加入 Carbopol ® 940 凝胶中,并对该布置进行表征并与现有的市售凝胶 (Mkt-gel) 配方进行比较。体外、离体皮肤动力学建模和体内皮肤保留、渗透和稳定性证实了载有醋氯芬酸的 NLC 制剂在表皮和真皮中更好地分布皮肤的价值。这些研究结果表明,ACE-NLC 渗透到皮肤层深处,并保持皮肤
作为第一大和第三大常见的痴呆症,阿尔茨海默病(AD) ( Association et al., 2011 ) 和额颞叶痴呆(FTD) ( Bang et al., 2015 ) 经常被误认为是彼此。这是由于它们在临床表现、认知领域障碍、脑萎缩以及语言能力、行为和人格的进行性改变方面具有相似性( Neary et al., 2005; Alladi et al., 2007; Womack et al., 2011 )。尽管在建立完善的临床鉴别诊断指南方面付出了巨大努力,但诊断的准确性仍然不令人满意。具体而言,当使用 NINCDS-ADRDA 标准( Neary et al., 1998 )进行诊断时,区分 AD 患者和 FTD 患者的灵敏度可高达 93%;然而,由于大多数 FTD 患者也符合 NINCDS-ADRDA 的 AD 标准(Varma 等人,1999 年),因此 FTD 识别的特异性仅为 23%。由于临床实践中需要对不同痴呆亚型应用不同的对症干预治疗(Pasquier,2005 年),因此开发计算机辅助诊断系统以提高这两种痴呆症鉴别诊断的准确性至关重要。在 T1 加权磁共振成像 (MRI) 中观察到的脑萎缩模式已成功用于捕捉人脑的结构变化(Du 等人,2007 年;Davatzikos 等人,2011 年),特别是用于开发可以识别大脑痴呆病理类型的计算系统。已针对 AD 和 FTD 建立了带有 MRI 的计算机辅助诊断系统(Suk 等人,2014 年;Jiskoot 等人,2018 年)。除了与正常衰老进行二元分类外,T1 加权 MRI 还用于 AD 和 FTD 的鉴别诊断,通过区分这两种痴呆症的萎缩模式(例如受影响的区域和变化率)来进行鉴别诊断(Raamana 等人,2014 年)。人们探索了各种结构生物标志物来区分 AD 和 FTD,例如灰质 (GM) 体积减少(Rabinovici 等人,2008 年)、皮质变薄(Du 等人,2007 年)、基于整个大脑 GM 和白质 (WM) 体积分布的高维特征(Davatzikos 等人,2008 年),以及单个结构的萎缩和形状畸形(Looi 等人,2010 年)。之前大多数关于痴呆分类的计算机辅助诊断系统的研究都侧重于二元分类任务,例如 NC vs. FTD、NC vs. AD 或 FTD vs. AD,文献中很少有直接的多类痴呆分类方法。Raamana 等人比较了多种结构特征,例如体积、拉普拉斯不变量和表面位移
阿尔茨海默病 (AD) 是世界上最常见的神经退行性疾病,其特征是认知能力逐渐下降,包括记忆力、言语能力、视觉空间表现和个性,导致基本日常活动困难 ( Weller and Budson, 2018 )。AD 患者不仅患痴呆的风险更高,而且更容易患上合并症,如骨质疏松症、抑郁症和心血管疾病 ( Prince et al., 2013 )。AD 的复杂病理生物学表明其具有异质性,可能与遗传背景、环境因素和其他因果触发因素有关。到目前为止,大多数病例是晚发型 AD,发生在 65 岁以后,而早发型 AD 和常染色体显性 AD 约占所有病例的 7% ( Alzheimer Association, 2019 )。在此框架内,围绕神经病理学特征的研究越来越多,从而希望预防或减缓疾病进展的速度。淀粉样蛋白前体 (APP) 依次裂解产生的淀粉样蛋白β (A β ) 肽被鉴定为淀粉样蛋白沉积的主要成分 (Long and Holtzman, 2019 )。多项研究表明,A β 沉积可能是 tau 积累所必需的,但与 A β 不同,tau 病理阶段与认知衰退阶段高度对应,这可以作为 AD 进展的预测指标 (Nelson et al., 2012 )。虽然很明显,前面提到的因素是导致 AD 的必要但不是充分条件,因此需要进一步的临床研究来了解潜在的相互作用 (Long and Holtzman, 2019 )。目前,像 AD 这样的退行性疾病是无法治愈的,美国食品药品监督管理局 (FDA) 批准的四种对症药物,包括三种胆碱酯酶抑制剂(多奈哌齐、利凡斯的明和加兰他敏)和美金刚(一种 N-甲基-D-天冬氨酸 (NMDA) 受体调节剂)可用于治疗患者的认知功能障碍,但它们的整体疗效不高且长期前景不乐观(Long and Holtzman,2019 年),因此需要进行持续的研究才能有任何新发现(Long and Holtzman,2019 年)。药物开发的负担迫使研究人员寻求替代方法,即药物再利用,即通过筛选数据库中可用的化合物来为现有药物寻找新用途的策略(Durães 等人,2018 年)。药物再利用的一个主要优势是其安全性,因为药物毒性数据通常在临床试验期间即可获得,并且可以大大减少处理时间(Zhang et al.,2016)。此外,药物再利用利用了数据库中积累的大量基因组数据,从而降低了药物开发的投资。最近的一项计算机模拟研究使用计算方法来研究配体-蛋白质相互作用,从而探索了用于治疗 AD 的潜在抗精神病药物(Kumar et al.,2017)。鉴于当前生物研究数据资源的丰富和计算算法的扩展,药物再利用可以利用可靠且稳健的数据促进药物开发。
仅在欧洲,每年就有超过 80,000 人死于创伤性脑损伤 (TBI),多达三分之一的 TBI 患者在受伤后六个月内无法完全康复,这种疾病仍然是发展中国家和发达国家面临的重大医疗和社会经济挑战[1-3]。尽管其对发病率和死亡率有显著影响,但治疗方法,特别是直接干扰 TBI 具体病理生理的治疗方法,仍然非常有限,并且仍然严格限于对症或实验性的[4,5]。为了克服这一困境,许多创新治疗方法已在多种不同的 TBI 临床前模型中进行了评估,并描述了有希望的结果;然而,到目前为止,这些治疗方法中均未在大型随机对照临床试验中显示出显著的益处[6-8]。导致有前景的临床前治疗方法无法应用到临床的主要问题之一是临床前结果评估不足,从而可能高估治疗效果:主要临床试验终点最近已从单纯评估放射学或监测参数转变为评估功能结果参数,如扩展格拉斯哥结果量表,因为这些参数被认为更能预测患者的生活质量。然而,临床前 TBI 研究主要关注组织病理学参数,如挫伤体积作为主要结果测量指标。结果测量不匹配的原因可能是客观和评估者独立评估啮齿动物临床前 TBI 模型中的步态和运动功能非常困难。受控皮质冲击模型是实验性 TBI 最常用的模型之一 [ 9 – 24 ]。尽管有大量的神经行为测试可用于评估 CCI 后的步态和运动功能,但关于此类神经行为测试与组织病理学损伤参数相关性的数据却很少。因此,尚不清楚神经行为测试是否会为通过组织病理学参数评估的结果提供重要的额外信息,以及是否对整体治疗效果的评估有显著贡献。鉴于运动功能受损可能仅仅是局部组织学损伤的直接结果,因此组织学结果评估可能就足够了,而广泛的神经行为测试则因此在时间和成本上效率低下。CatWalkXT 1 已被开发用于自动和独立于观察者地评估啮齿动物的步态和运动功能。它已用于各种创伤性和非创伤性神经系统疾病的临床前模型,如帕金森病、中风、周围神经损伤、脊髓损伤以及创伤性脑损伤 [25 – 31]。尽管 Cat-WalkXT 1 在脊髓损伤和周围神经损伤实验模型中的步态评估价值已得到充分证实,但其在啮齿动物临床前 TBI 步态评估中的价值仍不清楚。然而,在之前的研究中,我们最近验证了 CatWalkXT 1 是一种出色的独立于评估者的小鼠 CCI 后急性期步态和运动功能的自动化测试,并确定它是测试这些神经行为功能领域的出色工具,特别是在啮齿动物 CCI 模型中 [16]。然而,仍不清楚小鼠实验性 TBI 后结构损伤与步态和运动功能之间是否存在强有力的相关性,因此,是否可以根据组织学结果参数彻底评估治疗效果,或者是否应该更多地关注临床前 TBI 研究中的神经行为测试。
• Piasky (crovalimab-akkz) • 依库珠单抗药物 (Soliris、Bkemv、Epysqli) • Ultomiris (ravulizumab-cwvz) 依库珠单抗、ravulizumab 和 crovalimab 是单克隆抗体,可与补体蛋白 C5 结合并抑制其酶促裂解,从而防止形成终末补体复合物。Soliris 和 Ultomiris 获批用于治疗阵发性睡眠性血红蛋白尿 (PNH)、非典型溶血性尿毒症综合征 (aHUS)、视神经脊髓炎谱系障碍 (NMOSD) 和全身性重症肌无力 (gMG)。Piasky (crovalimab-akkz) 仅获批用于治疗 PNH。Epysqli 是参考产品 Soliris 的生物仿制药。Bkemv 被指定为参考产品 Soliris 的可互换生物仿制药。这两种药物均已获批用于治疗阵发性睡眠性血红蛋白尿 (PNH) 和非典型溶血性尿毒症综合征 (aHUS)。阵发性睡眠性血红蛋白尿 (PNH):PNH 是一种罕见的获得性造血干细胞疾病,与多种非特异性临床特征有关,包括但不限于溶血性贫血、疲劳、平滑肌张力障碍和非典型静脉血栓形成。治疗方案有限,但可能包括使用治疗性抗凝、异基因造血细胞移植和/或补体抑制剂,具体取决于症状严重程度、溶血程度和血栓形成史。抗补体疗法用于减少血管内溶血、减少或消除输血需求并降低血栓形成风险。如果患者停止接受依库珠单抗、拉维珠单抗或克罗伐单抗治疗,且未改用其他 PNH 治疗,则应在停止治疗后分别密切监测患者至少 8 周、16 周或 20 周,以检测溶血情况。非典型溶血性尿毒症综合征 (aHUS):aHUS 是一种罕见的血液疾病,其特征是微血管病性溶血性贫血、血小板减少和急性肾损伤。治疗方案有限,包括血浆疗法(血浆置换或新鲜冷冻血浆输注)、肾移植或补体抑制剂。依库珠单抗和拉维珠单抗对 aHUS 的疗效基于它们抑制补体介导的血栓性微血管病 (TMA) 并从而改善肾功能的能力。如果停药,停药后必须密切监测(例如:从停药的那一周开始定期进行实验室监测,包括全血细胞计数、外周涂片、乳酸脱氢酶、肾功能和尿蛋白,然后每周监测 4 周,每 2 周监测 1 个月,然后每月监测 3 个月,由治疗医生决定)。全身性重症肌无力 (gMG):gMG 是一种自身免疫性神经肌肉疾病,其特征是波动性运动无力,导致呼吸困难、吞咽困难、复视、构音障碍和眼睑下垂。全身性重症肌无力通常由针对神经肌肉接头的 IgG 自身抗体介导。治疗策略包括对症治疗(使用抗胆碱酯酶药物,如吡啶斯的明)、使用类固醇或其他免疫抑制药物(如硫唑嘌呤、环孢菌素或甲氨蝶呤)的慢性免疫治疗、快速免疫治疗(使用血浆置换或静脉注射免疫球蛋白)和/或手术治疗。依库珠单抗和雷维珠单抗是阻断神经肌肉接头处乙酰胆碱受体抗体引发的补体激活的免疫疗法。较新的疗法,包括 Vyvgart、Vyvgart Hytrulo 和 Rytiggo,通过与新生儿 Fc 受体 (FcRn) 结合来减少自身抗体。美国重症肌无力基金会 (MGFA) 国际共识指南在 FcRn 抑制剂和 Ultomiris 获批之前发布,建议对在充分试用吡啶斯的明后仍未达到治疗目标的患者使用免疫抑制药物和/或皮质类固醇。指南指出,在其他免疫疗法试验失败后,可考虑使用 Soliris 治疗严重、难治性 MG。视神经脊髓炎谱系障碍 (NMOSD):NMOSD 是一种严重的中枢神经系统自身免疫性疾病,由免疫介导的脱髓鞘和轴突损伤引起,主要针对视神经和脊髓。这种损伤是由抗水通道蛋白 4 (AQP4) 抗体引发的,这些抗体是 NMOSD 的诊断标准之一。该疾病的特征是视神经炎或横贯性脊髓炎发作成群,发作间期部分恢复。反复发作可能导致进行性视力障碍和瘫痪。治疗可能包括非说明书规定的免疫抑制疗法,包括利妥昔单抗、这种损伤是由抗水通道蛋白 4 (AQP4) 抗体引发的,而这些抗体在 NMOSD 的诊断标准中被考虑在内。该疾病的特征是视神经炎或横贯性脊髓炎发作成群,发作间期部分恢复。反复发作可能导致视力逐渐受损和瘫痪。治疗可能包括标签外免疫抑制疗法,包括利妥昔单抗、这种损伤是由抗水通道蛋白 4 (AQP4) 抗体引发的,而这些抗体在 NMOSD 的诊断标准中被考虑在内。该疾病的特征是视神经炎或横贯性脊髓炎发作成群,发作间期部分恢复。反复发作可能导致视力逐渐受损和瘫痪。治疗可能包括标签外免疫抑制疗法,包括利妥昔单抗、