Kitaev超导链是一种无旋转费米的模型,具有三胞胎样超导体。自从其参数的某些值以来,它引起了人们的兴趣,它提出了一个非平凡的拓扑阶段。在实际物理系统中,三胞胎超导性的稀缺性使Kitaev链的物理实现变得复杂。已经提出了许多建议,以克服这一困难并捏造人工三胞胎超导链。在这项工作中,我们研究了一个形成Cooper对的拼写的超导链,以S = 1状态,但S Z =0。的动机是,可以通过与S波超导底物的抗对称杂交相对诱导的链条诱导这种配对。我们研究边缘状态的性质和这些链的拓扑特性。在存在磁场的情况下,链可以用成对的费米亚点维持无间隙的超导性。这些费米点的动量空间拓扑是非平凡的,因为它们只能通过互相消灭而消失。对于小磁场,我们发现具有有限Zeemann Energy的良好定义的简并边缘模式。这些模式并非受到对称的保护,并且在散装中突然衰减,因为它们的能量与激发的连续体融合在一起。
高级消费者在家庭内部和外部我们的消费者业务的增长显着增长,这是由于对高速连通性的需求不断增长所致。家庭宽带使用需求现在超过2Gbps,持续上升反映了带宽密集型应用的扩散。作为回应,我们启动了纤维计划,从对称的2.5G,5G到10G等,再加上最新的Wi-Fi 7路由器,提供了无与伦比的宽带体验,可以通过最新的高容量智能设备享受。我们的纤维到家庭(“ ftth”)连接现在总计10.28亿,占2024年6月底的消费宽带基地的70%。铺平了通往互联未来的道路,我们是2024年3月在香港提供50克PON服务的第一个市场。除了为下一代应用程序(例如8K视频流,虚拟现实和人工智能(“ AI”))进行防止我们的网络之外,它也使我们能够抢先并解决潜在的网络问题,以增强服务质量,以增长的下一代应用程序。为了提升聪明的生活体验,我们于2024年1月推出了1o1o的房屋。此高级家庭解决方案集成了HKT的服务,最新的连接设备,专用的客户支持以及激动人心的生活方式提供,以提供具有凝聚力的一站式客户旅程和培养忠诚度。
摘要:干脑电图(EEG)系统的设置时间很短,需要有限的皮肤准备。但是,它们倾向于需要强的电极到皮肤接触。在这项研究中,通过将聚酰亚胺柔性印刷电路板(FPCB)部分嵌入聚二甲基硅氧烷中,然后将它们施放在具有六个对称的腿或肿块的传感器模具中,从而制造具有低接触阻抗(<150kΩ)的干脑电图电极(<150kΩ)。银 - 氯化物糊用在必须触摸皮肤的每条腿或凹凸的尖端上。使用FPCB使制造的电极能够保持稳定的阻抗。制造了两种类型的干电极:皮肤的平盘电极,头发有限,多型电极用于常用和浓密的头发区域。阻抗测试。实验结果表明,制造的电极表现出65至120kΩ之间的阻抗值。用这些电极获得的脑波模式与使用常规湿电极获取的电极相当。基于ISO 10993-10:2010原始Col和基于ISO 10993-5:2009协议的细胞毒性测试,基于ISO 10993-10:2010原始Col的原发性皮肤刺激测试通过了主要的皮肤刺激测试。
摘要 中国古典诗歌的自动生成一直是人工智能领域的难题。近年来,编码器-解码器模型为诗歌生成提供了一些可行的方法。但回顾以往的方法,仍存在两个主要问题:1)大多数都是单阶段生成方法,没有进一步的润色;2)它们很少考虑诗歌本身的限制,如声调、韵律。直观地看,一些中国古代诗人倾向于先写一首粗诗,然后再考虑其语义;而另一些人则先写一首语义诗,然后再细化其美学。在此基础上,为了更好地模仿人类的诗歌创作过程,我们提出了一种两阶段方法(即受限润色生成方法),其中每个阶段关注诗歌的不同方面(即语义和美学),从而可以生成更高质量的诗歌。这样,两阶段方法就发展成为两种对称的生成方法,即美学到语义的方法和语义到美学的方法。具体来说,我们设计了一种采样方法和一个门来制定声调和韵律的限制,这可以进一步改善生成的诗歌的节奏。实验结果表明,我们提出的两阶段方法在自动评估指标和人工评估指标方面都优于基线,特别是在声调和韵律方面取得了持续的改进。
对参数化量子电路(PQC)的成本景观知之甚少。然而,PQC在量子神经网络和变异量算法中都采用,这可能允许接近量子的优势。此类应用需要良好的优化器来培训PQC。重点的工作重点是专门针对PQC量身定制的量子意见的操作器。但是,对成本景观的无知可能会阻碍这种优化者的进步。在这项工作中,我们在分析中证明了PQC的两个结果:(1)我们在PQC中找到了指数较大的对称性,在成本景观中产生了最小值的指数较大的变性。另外,可以将其作为相关超级参数空间体积的指数减少。(2)我们研究了噪声下对称性的弹性,并表明虽然在噪声下是保守的,但非积极通道可以打破这些对称性并提高最小值的脱位,从而导致多个新的局部最小值。基于这些结果,我们引入了一种称为基于对称的最小值(SYMH)的优化方法,该方法利用了PQC中的基础对称性。我们的数值模拟表明,SYMH在存在与当前硬件相当的级别的情况下提高了整体优化器性能。总的来说,这项工作从局部门传输中得出了大规模电路对称性,并使用它们来构建噪声知识优化方法。
摘要。我们重新审视了阈值密码实批键交换(TPAKE)的概念,并将其扩展到增强的TPAKE(ATPAKE),即使在所有服务器都遭到妥协,除了允许(不可避免的)离线词典攻击外,它也保护密码信息。与tpake的先前概念相比,这类似于更换对称的pake,在该pake中,服务器以增强(或不对称)的pake存储用户的密码,例如不透明的[44],服务器存储密码哈希,仅在离线字典搜索密码中仅作为目标用作目标。ATPAKE方案也严格改善了APAKE的安全性,通过在一组服务器中秘密共享密码哈希。的确,我们的ATPAKE协议是阈值不透明的自然实现。我们在通用合并(UC)的框架中正式化了ATPAKE,并展示了实现它的实用方法。我们所有的方案都是通用构图,与用作子协议的任何APAKE接口,使其更易于采用。我们的主要方案依赖于阈值遗漏的伪辅助功能(TOPRF),而我们的独立贡献则可以解决[41]的UC TOPRF概念中的缺陷,并升级其中的TOPRF方案以实现固定定义,同时保留其最小成本和圆形的复杂性。我们使用在阈值计算内对任意上下文信息的隐性协议的技术,这是一般利益的。
我们调查了差异隐私中无偏见的高维平均估计器。我们考虑了差异的私有机制,其预期输出等于输入数据集的均值,对于从r d中的固定有限域K绘制的每个数据集。一种经典的私人平均估计方法是计算真实的均值,并添加无偏见但可能相关的高斯噪声。在本文的第一部分中,我们研究给定域K的高斯噪声机理可实现的最佳误差,当在某些p≥2中测量误差范围时。我们提供算法,以在适当的假设下计算给定k的高斯噪声的最佳协方差,并证明最佳误差的许多不错的几何特性。这些结果将来自域K的分解机制理论推广到对称和有限的(或等效地,对称的多面体)到任意界面的域。在本文的第二部分中,我们表明,高斯噪声机制在所有私人无偏见的平均估计机制中都在非常强烈的意义上达到了几乎最佳的误差。特别是,对于每个输入数据集,满足集中差异隐私的公正平均估计器至少与最佳高斯噪声机制一样多。我们将此结果扩展到局部差异隐私,并近似差异隐私,但是对于后者,对于数据集或相邻数据集,下限的误差较低的界限是必要的,则必须放松。
随着全球COVID-19疫苗接种计划的推出,有报道称潜在的神经系统并发症可能归因于疫苗。这些包括脑静脉窦血栓形成(CVST)1,这似乎是血栓形成与血小板减少综合征(TTS)的并发症。这已被记录为阿斯利康和ad26.cov2.s(Janssen)covid-19疫苗3的罕见并发症3。guillain-barre综合征(GBS)是一种急性自身免疫性多神经病,其特征在于肌法和肌肉无力。颅神经可能受到影响。在严重的情况下,可能会有呼吸肌的参与,需要呼吸机支持。许多案例系列强调了GBS与阿斯利康联合19 Covid-19疫苗4-8之间的潜在关联。在这里,我们提出了一小部分GBS和一例A-CIDP Astrazeneca Covid-19疫苗接种,强调了这种疫苗的这种罕见但严重的并发症。在两项关于CIDP的小型研究中,已有1.5%至11%的患者报告了先前的疫苗接种,其中首次神经系统症状在疫苗接种的8周内出现9,10。案例1一名62岁的妇女向急诊室展示了左脸下垂的3天历史,散发性言语,吞咽困难,上背部疼痛以及随后在她的上肢和下肢上升的对称对称的弱点,以及整个她的整个
摘要 - 与循环微泡注射结合的经颅聚焦超声(FUS)是唯一的非侵入性技术,它在时间和局部局部打开了血脑屏障(BBB),使靶向的药物允许进入中枢神经系统(CNS)。但是,单元FUS技术不允许同时靶向具有高分辨率的几个大脑结构,并且需要多元素设备来补偿头骨引入的畸变。在这项工作中,我们介绍了声学全息图在小鼠的两个镜像区域进行双侧BBB开口的第一个临床前应用。该系统由一个以1.68 MHz工作的单元素集中的换能器组成,并与3D打印的声性全息图耦合,旨在在体内在麻醉的小鼠中产生两个对称焦点,同时构成了由骷髅头造成的波段差异。T1赢得的MR图像显示在两个对称的准球面斑点处的gadolinium散发。通过编码时间转换领域,全息图能够在小型临床动物头骨内部多个斑点的衍射极限附近以分辨率的分辨率聚焦的声能。这项工作证明了全息图辅助BBB开放对单独半球对称区域中中枢神经系统中的低成本和高度局部靶向药物递送的可行性。
一种两步催化的热解技术可用于从废物塑料和水热合成途径中产生氧化石墨烯(RGO),以产生NICO 2 O 4纳米棒和NICO 2 O 4 @WPRGO纳米复合材料。废物塑料衍生的还原石墨烯(WPRGO)提供了导电网络,并刺激了其表面上NICO 2 O 4纳米棒的生长,以增加电化学电荷存储性能期间电子的收集和运输。此技术使NICO 2 O 4 @WPRGO适用于超级电容器电极材料。使用2 M KOH溶液中的两个和三电极系统评估复合材料的电化学性能。NICO 2 O 4 @WPRGO材料的出色特定电容值及其对称的CV和GCD的对称原型电池约为1566 F G 1和400 F G 1(以2 mV s 1)和1105 F G 1和334 F G 1和334 F G 1(分别为0.5 A G 1),分别为0.5 A G 1)。此外,组装的对称和非对称电池的高能密度分别为17 W H Kg 1和45.08 W H Kg 1,分别为153 W kg 1和980 W kg 1的功率密度,以及在15,000 000和3000 cycles之后,高循环稳定性分别为86%和88.5%。