槽之间的间距为 0。槽具有独特的轮廓,可实现 C 波段信号的耦合,而不会降低 Ku 波段信号的质量。槽的对称配置和独特轮廓确保在这种不连续性处不会产生高阶模式,从而可能降低 Ku 波段信号的质量。然后,分支波导网络将来自每对槽的耦合信号传送到合适的功率组合组件(例如 Magic T),每个组件用于相应的极化。应用 VSAT 网络 ISRO 提供将组合 C/Ku 接收馈电系统的技术转让给具有足够经验和设施的印度工业。有兴趣获得专有技术的企业可以写信详细说明其目前的活动、基础设施和设施。Ku 波段 OMT Ku 波段 OMT 由一个一端封闭的中央圆形波导和四个对称排列的分支矩形波导组成。一对这样的共线矩形波导将相同极化的信号传送到功率组合网络。中心圆形波导由一个独特的匹配元件组成。匹配元件用于对传入信号进行良好匹配。选择对称配置是为了避免在公共连接处不产生高阶模式。功率组合网络可以通过 Magic T 或简单的 E 平面分叉波导功率组合器来实现。
分析了一种连续变量 (CV)、独立于测量设备的 (MDI) 量子密钥分发 (QKD) 协议,该协议使三方能够连接进行量子会议。我们在不受信任的中继器上利用广义贝尔检测和后选择程序,其中远距离各方根据其准备好的相干态的正交位移的符号进行协调。我们推导出集体纯损失攻击下的协议速率,与等效的非后选择协议相比,该协议的速率距离性能有所提高。在所有各方与中继器距离相同的对称配置中,我们发现 6 公里内的密钥速率为正。这种后选择技术可用于提高长距离多方量子会议协议的速率,但代价是短距离性能降低。
分析了一种连续变量 (CV)、独立于测量设备的 (MDI) 量子密钥分发 (QKD) 协议,该协议使三方能够连接进行量子会议。我们在不受信任的中继器上利用广义贝尔检测和后选择程序,其中远距离各方根据其准备好的相干态的正交位移的符号进行协调。我们推导出集体纯损失攻击下的协议速率,与等效的非后选择协议相比,该协议的速率距离性能有所提高。在所有各方与中继器距离相同的对称配置中,我们发现 6 公里内的密钥速率为正。这种后选择技术可用于提高长距离多方量子会议协议的速率,但代价是短距离性能降低。
在本研究中,我们报告了表面改性活性炭 (AC) 的合成。活性炭的表面已使用银纳米粒子进行改性。合成过程简单、成本有效且环境友好。改性 AC 粉末已使用 X 射线衍射、扫描电子显微镜和表面积和孔径测量进行了表征。通过使用镁离子基聚合物电解质制造 EDLC 的对称配置,测试了所制备材料的电化学性能。使用循环伏安法、电化学阻抗谱和恒电流充放电技术对电池进行了测试。含有 3 wt% 银的 AC 呈现出最佳效果,比电容约为 398 F g − 1 能量密度,功率密度为 55 Wh kg − 1 和 2.4 kW kg − 1,使其成为超级电容器应用的有趣材料。
绝大多数星形星系都被星际介质弹出的大量气体包围。紫外线的吸收和发射线代表强大的诊断,以通过氢和金属离子的谐振过渡来限制这些流量的凉爽相。对这些观察结果的解释通常很困难,因为它需要对气体中连续性和发射线传播的详细建模。为了实现这一目标,我们提供了一个大约20000个模拟光谱的大型公共网格,其中包括与Mg II,C II,C II,SI II和Fe II相关的H ilyα和五个金属过渡,可在线访问。光谱已经使用Rascas Monte Carlo辐射传输代码计算出5760个理想化的球形对称配置,围绕中心点源发射,并以其柱密度,多普勒参数,尘埃不透明,风速,风速以及各种密度和速度渐变为特征。旨在预测和解释LYα和金属线专利线,我们的网格表现出广泛的谐振吸收和发射特征,以及荧光线。我们说明了如何通过对观察到的LYα,C II和SI II光谱进行关节建模来帮助更好地限制风质。使用多云的模拟和病毒缩放关系,我们还表明,即使培养基被高度离子化,也有望成为T≈104-10 5 K的气体的忠实示踪剂。发现C II探测与LYα相同的温度范围,而其他金属线仅痕迹冷却器相(T≈104 K)。由于它们的气体不透明度在很大程度上取决于气体温度,入射辐射场,金属性和粉尘耗尽,因此我们要警告光学上的金属线不一定源自低H I柱密度,并且可能不会准确探测Lyman Continuum Continuum Continuum泄漏。