俄亥俄州娱乐水域有害藻华应对策略的重点是公有、设有公共海滩和船坡的娱乐湖泊,尽管这些做法可适用于任何娱乐水域。俄亥俄州将在州立公园湖滩张贴警告,并在船坡上张贴标牌。在由俄亥俄州自然资源部 (ODNR) 和美国陆军工程兵团 (USACE) 联合管理的州立公园湖泊上,采样和公众通知将根据机构间协议进行协调(见附录 I)。鼓励负责其他娱乐水域的当地机构和实体遵循州战略发布警告,以一致地向公众传达风险。为了协助当地海滩管理人员和公共卫生部门,今年制定了一份当地 HAB 应对指南,并作为附录 A 包含在该州应对策略中。
摘要背景:生物信息学工作流程经常使用自动基因组组装和蛋白质聚类工具。在大多数这些工具的核心中,执行时间的很大一部分用于确定两个序列之间的最佳局部比对。此任务使用 Smith-Waterman 算法执行,这是一种基于动态规划的方法。随着现代测序技术的出现以及基因组和蛋白质数据库的规模不断扩大,对更快的 Smith-Waterman 实现的需求应运而生。CPU 提供了多种 Smith-Waterman 算法的 SIMD 策略。然而,随着 HPC 设施向基于加速器的架构的转变,对高效的 GPU 加速策略的需求也随之而来。现有的基于 GPU 的策略要么针对特定类型的字符(核苷酸或氨基酸)进行了优化,要么仅针对少数应用用例进行了优化。结果:在本文中,我们提出了一种新的 GPU 架构序列比对策略 ADEPT,它与领域无关,支持来自基因组和蛋白质的序列比对。我们提出的策略使用 GPU 特定的优化,不依赖于序列的性质。我们通过实施 Smith-Waterman 算法并将其与类似的 CPU 策略以及每个领域中已知的最快 GPU 方法进行比较,证明了该策略的可行性。ADEPT 的驱动程序使其能够跨多个 GPU 进行扩展,并可以轻松集成到利用大规模计算系统的软件管道中。我们已经证明,基于 ADEPT 的 Smith-Waterman 算法在 Cori 超级计算机的单个 GPU 节点(8 个 GPU)上分别针对基于蛋白质和基于 DNA 的数据集展示了 360 GCUPS 和 497 GCUP 的峰值性能。总体而言,与相应的 SIMD CPU 实现相比,ADEPT 在节点到节点的比较中显示出 10 倍更快的性能。结论:ADEPT 表现出相当或更好的性能(下页继续)
这篇早期发布的文章已经过同行评审并被接受,但尚未经过撰写和编辑过程。最终版本在风格或格式上可能略有不同,并将包含指向任何扩展数据的链接。
无家可归趋势——我们的客户是谁? 7 失去住所的原因 7 客户的年龄 8 建议、申请和接受 9 临时住所 9 住宿和早餐费用 10 临时住所 10 案例决定 11 无家可归预防 12 当前服务提供——我们的支持合作伙伴(核心) 13 我们的支持合作伙伴(限时资金) 13 我们共同取得了什么成就? 私营部门住房 14 我们共同取得了什么成就——外展服务——露宿街头
电力变压器将是现场维护的唯一充油设备。一台或两台主变压器将分别包含约 8,000 加仑石油作为介电流体,收集站内的仪器变压器将分别包含约 20 加仑,而滑架变压器将分别包含约 600 加仑。现场将为每台逆变器配备一台或两台变压器、6 台仪器变压器和滑架变压器,并在 O&M 大楼中存放一台备用变压器。附录 H 包括油应急计划 (OCP),作为 40 CFR 112.7(k)(2) 中规定的一般二次遏制的替代要求,以代替变压器的二次遏制。OCP 制定了预防、检测和应对设备故障和/或排放的程序。OCP 满足 40 CFR 109.5 中规定的要求。
个人防护装备使用、更换和处置的 AHS 指南摘要 ...................................................................................................................................... 2 访问...................................................................................................................................................................... 3 重新订购个人防护装备 ...................................................................................................................................................... 4 服务提供商收到未订购的个人防护装备时的处理 ...................................................................................................... 5 退货...................................................................................................................................................................... 5 PPE 成本 ...................................................................................................................................................................... 5 在发生短缺时支持其他服务提供商的流程 ............................................................................................................. 5 与集体生活环境和为残障服务个人提供的其他服务相关的信息 ............................................................................................. 5
摘要:孔隙和裂纹是金属增材制造(MAM)包括定向能量沉积(DED)中的主要缺陷。激光加工过程中,激光闪光(瞬时高温)经常会产生气态烟尘,从而导致各种缺陷,例如孔隙、未熔合、不均匀性、流动性差和成分变化。然而,DED中烟尘产生的原因和危害尚不清楚。在激光加工中,特别是激光焊接中,由于烟尘会产生阻碍激光束与材料之间均匀反应的缺陷,因此已经进行了许多关于防止烟尘的研究。通常,烟尘发生在容易蒸发的低熔点成分或敏感氧化元素中。不适当的条件也会产生影响,包括激光功率、行进速度、送粉速率和保护气供应。实际上,DED过程中产生烟尘的因素还有很多,缺乏了解需要大量的反复试验。本文回顾了与激光相关的和焊接冶金学文献,重点介绍了粉末DED中烟尘的防止。解释烟雾产生的原因为激光诱导等离子体产生的空化气泡阶段及释放的纳米颗粒,并探讨合金成分及环境条件对DED工艺烟雾产生的影响,并提出防止烟雾产生的建议。