由于发现催化活性的改善与晶体162
。Orlando Marques de Paiva博士,87,Paulo 05508-270,SP,巴西; andrepegororo21@gmail.p。 ); luzanolli@gmail。 ); Mattheus。 ); 。 ); M.C.D. ); silva2006@yahoo.br(abr.S。 ); vsotulio@yahoo.br(v.t.g。 ); vanochin@us(i.s ..... ); kaimarajo@gmail.com(K.A。) SANTIAS 13635-900,SP,巴西; av。 Paul 345教授,Sâ或Paulo 05459-900,SP,巴西; treanam@br。 br;电话。 : +55-011-3091-1377Orlando Marques de Paiva博士,87,Paulo 05508-270,SP,巴西; andrepegororo21@gmail.p。); luzanolli@gmail。); Mattheus。); 。); M.C.D.); silva2006@yahoo.br(abr.S。); vsotulio@yahoo.br(v.t.g。); vanochin@us(i.s .....); kaimarajo@gmail.com(K.A。)SANTIAS 13635-900,SP,巴西; av。Paul 345教授,Sâ或Paulo 05459-900,SP,巴西; treanam@br。 br;电话。 : +55-011-3091-1377Paul 345教授,Sâ或Paulo 05459-900,SP,巴西; treanam@br。 br;电话。: +55-011-3091-1377
b'与 ED 一样,对于一般的混合态,EC 也很难计算,而且只在极少数特殊情况下才为人所知。但是,对于纯态,例如前面讨论过的 | \xcf\x88 \xce\xb8 \xe2\x9f\xa9 状态,EC = \xe2\x88\x92 Tr \xcf\x81 A log 2 ( \xcf\x81 A ) ,等于 ED 。实现纯态稀释过程的最佳方式是利用两种技术:(i)量子隐形传态,我们在一开始就介绍过,它简单地说是一个双方共享的贝尔态可以用来确定地转移一个未知的量子比特态,以及(ii)量子数据压缩[12],它的基本意思是,一个由 n 个量子比特组成的大消息,每个量子比特平均由一个密度矩阵 \xcf\x81 A 描述,可以压缩成可能更少的 k = nS ( \xcf\x81 A ) \xe2\x89\xa4 n 个量子比特;而且只要 n 足够大,就可以忠实地恢复整个消息。我们稍后会讨论量子数据压缩。纯态在渐近极限下的可逆性。有了这两个工具,爱丽丝可以先准备 n 份 | \xcf\x88 \xce\xb8 \xe2\x9f\xa9 (总共 2 n 个量子比特)在本地压缩 n 个量子比特为 k 个量子比特,然后 \xe2\x80\x9csend\xe2\x80\x9d 发送给 Bob,并使用共享的 k 个贝尔态将压缩的 k 个量子比特传送给 Bob。然后 Bob 将 k 个量子比特解压缩回未压缩的 n 个量子比特,这些量子比特属于纠缠态 | \xcf\x88 \xce\xb8 \xe2\x9f\xa9 的 n 个副本中的一半。因此,Alice 和 Bob 建立了 n 对 | \xcf\x88 \xce\xb8 \xe2\x9f\xa9 。这描述了纯态稀释过程的最佳程序。蒸馏的纠缠和纠缠成本被渐近地定义,即两个过程都涉及无限数量的初始状态的副本。对于纯态,EC = ED [7],这意味着这两个过程是渐近可逆的。但对于混合态,这两个量都很难计算。尽管如此,预计 EC ( \xcf\x81 ) \xe2\x89\xa5 ED ( \xcf\x81 ),即蒸馏出的纠缠不能比投入的多。形成的纠缠\xe2\x80\x94 是一个平均量 。然而,正如我们现在所解释的,有一个 EC 的修改,通过对纯态的 EC 取平均值获得,它被称为形成纠缠 EF [11, 13]。任何混合态 \xcf\x81 都可以分解为纯态混合 { pi , | \xcf\x88 i \xe2\x9f\xa9\xe2\x9f\xa8 \xcf\x88 i |} ,尽管分解远非唯一。以这种方式通过混合纯态构建混合态平均需要花费 P'
机器能思考吗?这个问题是艾伦·图灵在 1950 年发表的里程碑式论文《计算机器与智能》中提出的。图灵考虑了一种特殊的机器,即图灵机。现代电子数字计算机相当于图灵机,忽略了有限内存的限制。为了本文的目的,我们可以将计算机定义为任何相当于图灵机的机器。图灵的里程碑式论文在心灵哲学中播下了整个范式的种子,认为心灵本质上是一台计算机。更准确地说,心灵可以被认为是运行在大脑硬件上的软件程序,其心理状态与计算状态/过程相同。如果这是正确的,那么原则上没有任何障碍可以创造人工心灵(1)仅通过以适当的方式对计算机进行编程或(2)仅通过实现正确的计算过程。至少,这是当今许多计算机科学家和心灵哲学家的希望和信念。图灵本人对自己的问题给出了肯定的回答,并提出了一个测试——图灵测试——来确定计算机是否真正能够思考并具有心理。
b'对于任何一对纯状态| \ xcf \ x88 \ xe2 \ x9f \ xa9,| \ xcf \ x86 \ xe2 \ x9f \ xa9 \ xe2 \ x88 \ x88h。但是,如果| \ xe2 \ x9f \ xa8 \ xcf \ x88 | \ xcf \ x86 \ xe2 \ x9f \ xa9 | = 0或| \ xe2 \ x9f \ xa8 \ xcf \ x88 | \ xcf \ x86 \ xe2 \ x9f \ xa9 | = 1导致矛盾,因为纯净的状态都不满足。请注意,此论点实际上意味着更强有力的陈述:没有统一的u \ xe2 \ x88 \ x88 u(h)可以满足(1)对独特的,非正交的纯态| \ xcf \ x88 1 \ xe2 \ x9f \ xa9,| \ xcf \ x88 2 \ xe2 \ x9f \ xa9 \ xe2 \ x88 \ x88h。非正交性的假设在这里至关重要,例如,对某些正交纯状状态满意(1)。以前的参数似乎并不完全笼统,因为可能存在更多的一般方案来复制量子信息。最通用的操作将是一些量子通道T:B(H)\ Xe2 \ X86 \ X92 B(H \ Xe2 \ X8A \ X97H)满足Tr \ Xe2 \ X8A \ X8A \ X97 ID B(H) \ xe2 \ x97 \ xa6 t = id B(h)。(2)'
摘要:CRISPR-Cas9技术的出现彻底改变了基础和转化生物医学研究。为了使Cas9核酸酶发挥基因组编辑活性,通常将源自猿猴病毒40(SV40)T抗原的核定位信号(NLS)作为基因融合体安装,以引导细胞内的Cas9蛋白进入细胞核。值得注意的是,先前的研究表明,多个SV40 NLS融合可以提高Cas9衍生的基因组编辑和碱基编辑工具的靶向活性。此外,多NLS融合可以以组成性表达和直接递送Cas9-引导RNA核糖核蛋白(RNP)复合物的形式增加Cas9的细胞内活性。然而,NLS融合与细胞内Cas9活性之间的关系尚不完全清楚,包括活性对NLS融合数量或组织的依赖性。在本研究中,我们构建并纯化了一组在蛋白质的 N 端或 C 端含有 1 至 4 个 NLS 重复序列的化脓性链球菌 Cas9 (SpCas9) 变体,并系统地分析了多 NLS 融合对 SpCas9 RNPs 活性的影响。我们发现,多 NLS 融合可以提高脂质转染或核转染 Cas9 RNPs 的细胞内活性。重要的是,多 NLS 融合可以增强 SpCas9 RNPs 在原代细胞、干细胞/祖细胞和小鼠胚胎中的基因组编辑活性。