APAO的问题之一是用于生产它们的Ziegler-Natta催化剂。这些催化剂的多个活性位点允许在产生的粘合剂中进行多种结构。金属新世是一种“单位点”催化剂,可以精确控制所得烯烃粘合剂的结构和分子量。这允许精确控制其性能的所有方面的设计师胶粘剂。例如,生产者可以控制非晶与结晶聚合物段的比率。这对于定制聚合物的特定粘附和凝聚力可能很有用。仔细设计化学的设计允许延迟结晶,这将出色的初始锚固结合到具有高内聚力的底物上,随着时间的推移而建立。同时,甲金属实现了狭窄的分子量分布,从而可以对粘度进行优越的控制。对这些各种因素的个性化管理可以产生具有非常具体且可预测的性能特征的粘合剂。
摘要:使用三价ERBIUM(ER 3+)的使用,通常嵌入固态中的原子缺陷,在电信设备中广泛采用作为掺杂剂,并显示出基于自旋的量子记忆的量子记忆,以实现量子通信。尤其是其天然电信C波段光学转变和自旋 - 光子接口使其成为集成到现有光纤网络中的理想候选者,而无需量子频率转换。然而,成功的缩放需要具有固有核自旋的宿主材料,与半导体铸造工艺的兼容性以及与硅Pho-Pho-Photonics的直接整合。在这里,我们使用铸造型原子层沉积过程呈现二氧化钛(TiO 2)在硅底物上的薄膜生长,并在ER浓度上具有广泛的掺杂控制。即使在氧气退火后生长的膜是无定形的,它们也表现出相对较大的晶粒,并且嵌入的ER离子表现出来自氧化酶TiO 2的特征性光学发射光谱。至关重要的是,这种生长和退火过程保持了纳米光整合所需的低表面粗糙度。最后,我们通过evaneScent耦合与高质量的Si纳米腔腔接头,并展示了其光学寿命的大型purcell增强(≈300)。我们的发现表明,将ER掺杂材料与硅光子学集成在一起的低温,非破坏性和底物独立的过程。关键字:原子层沉积,纳米光子学,稀土离子,Purcell增强,量子记忆F在高掺杂密度下,该平台可以实现集成的光子组件,例如片上放大器和激光器,而稀释浓度可以实现单个离子量子记忆。
活化的碳(AC)可以添加到聚合物基质中以实现电导率,从而导致潜在的传感器应用。在这项研究中,我们评估了与聚苯二甲酸酯(PBT)/聚酰胺6(PA6)混合物混合时AC的拉伸强度。PBT/ PA6/ AC复合材料是通过0、2、4、6、8和10%AC的注射成型制备的。在国际标准化组织527标准组织之后,对样品进行了拉伸测试。PBT/PA6/2%AC,PBT/PA6/4%AC,PBT/PA6/6%AC和PBT/PA6/8%AC样品的拉伸强度分别为45.13、44.60、42.48和41.82 MPA。这些值高于没有AC的PBT/PA6混合物的(40.93 MPa)。将AC掺入PBT/PA6混合物中会增加拉伸强度。PBT/PA6/2%AC样品具有最高的拉伸强度,而PBT/PA6/10%AC样品的拉伸强度比PBT/PA6混合物低39.79 MPa。所有PBT/PA6/AC样品的拉伸模量高于PBT/PA6混合物。将AC添加到PBT/PA6混合物中时,微结构变得更小,更细,增强了凝聚力并改善机械性能。这项工作中分析的方法的可疑应用领域是,PBT/PA6混合物可以用少量AC回收为导电聚合物复合材料。
自然广泛使用相对带电的聚合物之间的静电键来组装和施加材料,但在合成系统中利用这些相互作用一直在挑战。合成材料与高密度的离子键(例如聚电解质复合物)交联,只有在充满大量水的情况下减弱其电荷相互作用时才能正常起作用。脱水这些材料会产生牢固的库仑粘结,以至于它们变得脆弱,非心形和几乎不可能处理。我们提出了一种策略,可以通过将衰减器间隔物与携带部分的电荷接收到固定的聚合物固体中的静电键强度。这会产生一类多素式材料,其电荷密度为100%,可加工且可延展,而无需水,高度溶剂和防水,并且完全可回收。这些材料是“复合物”,仅使用定制的离子键合嫁给热塑性和热固性的特性。
本演讲包含1995年《私人证券诉讼改革法》的含义中的前瞻性陈述。本演讲中包含的所有陈述,除了与当前事实或当前情况有关的历史事实或陈述的陈述以外,包括但不限于包括Zervimesine在内的产品候选者,也称为Zervimesine,以及任何预期或隐含的收益或结果,包括我们对Zervimesine的最初临床结果以及我们在包括我们的临床范围内的临床范围,包括我们的临床范围,包括我们的临床范围,包括我们的临床范围,我们的临床计划,包括我们的临床范围,包括我们的临床范围,包括我们的临床临床范围,监管计划,对潜在患者人群的期望,对我们的专利组合的期望以及我们预期的现金跑道是前瞻性的陈述。这些陈述,包括与我们临床试验的时间和预期结果有关的陈述,涉及已知和未知的风险,不确定性和其他重要因素,这些因素可能导致我们的实际结果,绩效或成就与前瞻性陈述所表达的任何未来结果,表现或成就具有实质性不同。在某些情况下,您可以通过诸如“可能”,“可能”,“意志”,“应该”,“期望”,“计划”,“目标”,“ seek”,“预期”,“预期”,“目标”,“目标”,“目标”,“目标”,“项目”,“相信”,“相信”,“估计”,“估计”,“否定”,“或其他类似”,“”或“否定”,“”或“ torys”,“”或“否定”,这些风险并不详尽,我们面临已知和未知风险。您不应依靠这些前瞻性陈述作为未来事件的预测。我们将这些前瞻性陈述基于我们当前关于未来事件和财务趋势的预期和预测,我们认为我们可能会影响我们的业务,财务状况和经营业绩。这些前瞻性陈述仅在本演讲之日起说明,并且受到许多风险,不确定性和假设的约束,其中一些无法预测或量化,其中一些超出了我们的控制。可能无法实现或发生在我们前瞻性陈述中所反映的事件和情况,实际结果可能与前瞻性陈述中预测的结果有实质性的差异。此外,我们在动态的行业和经济中运作。新的风险因素和不确定性可能会不时出现,管理层无法预测我们可能面临的所有风险因素和不确定性。除了适用法律要求外,我们不打算公开更新或修改本文中包含的任何前瞻性陈述,无论是由于任何新信息,未来事件,无法正常改变情况。可能导致实际结果与当前期望有重大差异的因素包括但不限于以下因素:我们通过开发活动,临床前研究和临床试验以及与此相关的成本成功推动我们当前和未来的产品候选者的能力;初步数据,临床前研究和较早临床试验结果固有的不确定性可预测早期或晚期临床试验的结果;监管申请和批准的时机,范围和可能性,包括我们候选产品的监管部门批准;竞争,我们确保新(并保留现有)赠款资金的能力,我们的增长和管理增长,维持与供应商的关系并保留我们的管理和关键员工的能力;适用法律或法规的变化;我们可能会受到其他经济,商业或竞争因素的不利影响,包括持续的经济不确定性的可能性;我们对支出和盈利能力的估计;我们竞争的市场的发展;我们实施战略计划并继续创新现有产品的能力;我们捍卫知识产权的能力;持续的全球和地区冲突的影响; COVID-19大流行对我们的业务,供应链和劳动力的影响;以及在www.sec.gov上向美国证券交易委员会提交的年度和季度报告的“风险因素和季度报告的“风险因素”部分中,更全面描述了风险和不确定性。
图形神经网络(GNNS)已在许多图分析任务(例如节点分类和链接预测)上实现了最新结果。然而,图形群集等图形上的重要无监督问题已证明对GNN的进步具有更大的抵抗力。图形聚类的总体目标与GNN中的节点合并相同 - 这意味着GNN池方法在聚类图方面做得很好?令人惊讶的是,答案是否 - 在简单的基准(例如应用于学习的表示上的K均值)良好工作的情况下,循环的GNN合并方法通常无法恢复群集结构。我们通过仔细设计一组实验来进一步研究,以研究图形结构和属性数据中不同的信噪情景。为了解决这些方法在聚类中的性能不佳,我们引入了深层模块化网络(DMON),这是一种受群集质量模块化量度启发的无监督的汇总方法,并显示了它如何处理现实世界图的挑战性聚类结构的恢复。同样,在现实世界数据上,我们表明DMON产生的高质量群集与地面真相标签密切相关,从而获得了最先进的结果,比各个不同指标的其他合并方法提高了40%以上。关键字:图形聚类,图形神经网络,随机块模型
自然广泛使用相对带电的聚合物之间的静电键来组装和施加材料,但在合成系统中利用这些相互作用一直在挑战。合成材料与高密度的离子键(例如聚电解质复合物)交联,只有在充满大量水的情况下减弱其电荷相互作用时才能正常起作用。脱水这些材料会产生牢固的库仑粘结,以至于它们变得脆弱,非心形和几乎不可能处理。我们提出了一种策略,可以通过将衰减器间隔物与携带部分的电荷接收到固定的聚合物固体中的静电键强度。这会产生一类多素式材料,其电荷密度为100%,可加工且可延展,而无需水,高度溶剂和防水,并且完全可回收。这些材料是“复合物”,仅使用定制的离子键合嫁给热塑性和热固性的特性。
概览我们是激光雷达及感知解决方案市场的全球领导者。通过整合硬件和软件,我们与市场上大多数仅专注于硬件的激光雷达公司有所差异。激光雷达与视觉或其他传感器相结合形成感知解决方案,使汽车和机器人具备感知能力。我们基于芯片驱动的激光雷达硬件和人工智能感知软件开发解决方案,拓展应用场景并实现行业规模商业化。我们的业务主要包括(i)销售用于ADAS、机器人及其他非汽车行业(如清洁、物流、工业、公共服务和检查等)的激光雷达硬件产品,(ii)销售集成我们的激光雷达硬件和人工智能感知软件的激光雷达感知解决方案,以及(iii)提供技术开发及其他服务。
聚类是算法中的一个重要主题,在机器学习、计算机视觉、统计学和其他几个研究学科中有着广泛的应用。图聚类的传统目标是找到具有低电导性的聚类。这些目标不仅适用于无向图,而且无法考虑聚类之间的关系,而这对于许多应用来说可能是至关重要的。为了克服这些缺点,我们研究了有向图(有向图),其聚类彼此之间展示了更多的“结构”信息。基于有向图的 Hermitian 矩阵表示,我们提出了一种近线性时间的有向图聚类算法,并进一步表明我们提出的算法可以在合理的假设下以亚线性时间实现。我们的理论工作的意义通过对联合国商品贸易统计数据集的大量实验结果得到证明:我们算法的输出聚类不仅展示了聚类(国家集合)在进出口记录方面如何相互关联,还展示了这些聚类如何随着时间的推移而演变,这与已知的国际贸易事实一致。
识别高能粒子碰撞中形成的喷流需要解决可能大量终态粒子的优化问题。在这项工作中,我们考虑使用量子计算机加速喷流聚类算法的可能性。专注于电子-正电子碰撞的情况,我们考虑一种众所周知的事件形状,称为推力,其最优值对应于一组粒子中最像喷流的分离平面,从而定义两个半球喷流。我们展示了如何将推力公式化为量子退火问题和 Grover 搜索问题。我们分析的一个关键部分是考虑将经典数据与量子算法接口的现实模型。通过顺序计算模型,我们展示了如何将众所周知的 O × N 3 Þ 经典算法加速为 O × N 2 Þ 量子算法,包括从 N 个终态粒子加载经典数据的 O × N Þ 开销。在此过程中,我们还找到了一种将经典算法加速到 O = N 2 log N Þ 的方法,该方法使用受 SISC 单喷射算法启发的排序策略,该算法没有自然的量子对应物。借助并行计算模型,我们在经典和量子情况下都实现了 O = N log N Þ 的缩放。最后,我们考虑将这些量子方法推广到与大型强子对撞机质子-质子碰撞中使用的算法更密切相关的其他喷射算法。